Astronomers find a 5.5 million light-years-long 'galaxy filament' connecting 14 galaxies

This cosmic web filament is reported to have a thickness of 2.6 to 3.3 million light years.
UPDATED AUG 27, 2025
The Hubble Space Telescope provides a close look at the spiral galaxy NGC 4217, 60 million light-years away. (Cover Image Source: Wikimedia Commons | Photo by ESA/Hubble & NASA, R. Schoofs)
The Hubble Space Telescope provides a close look at the spiral galaxy NGC 4217, 60 million light-years away. (Cover Image Source: Wikimedia Commons | Photo by ESA/Hubble & NASA, R. Schoofs)

Remarkable discoveries in galaxies and cosmic structures happen regularly. Each one shows how dynamic and awe-inspiring the universe is. Recently, Astronomers have found a new rotating galaxy filament by analyzing data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE-HI) survey. Stretching 5.5 million light-years in length and connecting 14 galaxies, the newly discovered filament was reported on August 18 on the pre-print server ArXiv

This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. 
(Image Source: NASA | ESA | CSA | Feige Wang (University of Arizona).)
This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. (Image Source: NASA | ESA | CSA | Photo by Feige Wang, University of Arizona)

Galaxies are not spread at random across the universe, as per NASA's findings. They not only form clusters but also organize themselves into large interconnected structures, with huge empty spaces in between. This "cosmic web" begins as a loose formation and grows clearer over time as gravity pulls matter together. These filaments supply gas to dense nodes, which house galaxies, allowing them to evolve and transform. Researchers have recently discovered large filamentary structures through observations of neutral atomic hydrogen (HI).

An image of the M31 galaxy.
(Representative Image Source: Getty Images | 	Francisco Hernandez Aparicio.)
An image of the M31 galaxy, the 'Andromeda Nebula'. (Representative Image Source: Getty Images | Photo by Francisco Hernandez Aparicio)

Studying the cold HI gas in galaxy filaments fosters understanding of the connection between the low-density gas in the cosmic web and how it helps in the evolution of galaxies that exist in it, noted Phys.org. A team of astronomers led by Madalina N. Tudorache from the University of Cambridge in the UK has now reported the detection of a series of HI galaxies from the MIGHTEE-HI survey "at z = 0.03 in the COSMOS field, which form a filamentary-like structure," in their paper.

The present day dark matter distribution in a slice cut through a simulation of a flat universe with cosmological constant. The slice has a side length of 520 million light years, and a thickness of 100 million light years. It contains the so-called
Galaxy clusters like Coma, Virgo, and Perseus are labelled along local filaments. (Image Source: Wikimedia Commons | Photo by Klaus Dolag)

The 14 galaxies are not far from each other, and lie within a "small range of recessional velocity between 9,230 and 9,700 km/s," reported Phys.org. They are arranged in a line inclined at about 30 degrees north-west on "the celestial sphere" — a conceptual tool in astronomy where celestial bodies are projected on an imagined sphere surrounding the Earth. This linear structure is roughly 5.5 million light-years long and about 117,000 light-years wide. The observations suggest that this galaxy filament is part of a much larger cosmic web that stretches at least 49 million light-years. This cosmic web filament seems to be between 2.6 and 3.3 million light-years thick, and observations showed that the 14 HI galaxies are strongly aligned with the cosmic web filament.



 

The findings have proved that the angular momentum of these galaxies is closely linked to the larger filamentary structure, i.e., the galaxies rotate around the "spine" of the filament, per Phys.org. Tudorache's team was also able to obtain key information confirming that they had captured an early stage of the galaxy filament's evolution, stating, "The abundance of HI galaxies along the filament and the low dynamical temperature of the galaxies within the filament indicates that this filament is at an early evolutionary stage where the imprint of cosmic matter flow on galaxies has been preserved over cosmic time." These findings have made history as one of the largest spinning structures to have ever been discovered in the cosmos. Recently, scientists also uncovered a potential answer to where the Universe's "missing matter" goes, and it has everything to do with long strings of gas that connect the densest pockets of space — galaxy filaments.

MORE STORIES

In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
10 hours ago
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
2 days ago
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
2 days ago
While astronomers were observing Quaoar on June 25, 2025, a solid object unexpectedly blocked out the starlight for 1.23 seconds.
3 days ago
A groundbreaking study has not only solved the longstanding mystery of how ancient stellar systems form but has also revealed an entirely new class of object in the Milky Way.
3 days ago
The greedy white dwarf star in question is the V Sagittae, which is a highly luminous binary star and is found eating its larger twin.
5 days ago
This dwarf planet is the second trans-Neptunian object with a confirmed presence of gas.
6 days ago
A peculiar object is helping astronomers explain why a common element remained undetected in the Jupiter and Saturn atmospheres.
6 days ago
The findings would help astronomers learn more about the formation and evolution of dwarf galaxies, particularly the ones that have been isolated from their original groups.
7 days ago
Astronomers have found a newly identified system, unofficially named 'JWST's Quintet,' where at least five galaxies and 17 star-forming clumps are merging.
Sep 8, 2025