Astrophysicists unveil new protocol to capture supernovae mere hours after they explode

A pilot study successfully demonstrated a new protocol for capturing the earliest light spectra of stellar explosions, often within 24 to 48 hours.
PUBLISHED AUG 21, 2025
Composite image of the Tycho Supernova in the constellation Cassiopeia. (Cover Image Source: NASA/CXC/RIKEN & GSFC | T. Sato et al)
Composite image of the Tycho Supernova in the constellation Cassiopeia. (Cover Image Source: NASA/CXC/RIKEN & GSFC | T. Sato et al)

In a major advance for astrophysics, a team of scientists led by Spain's Institute of Space Sciences (ICE-CSIC) has developed a new method to detect and study supernovae mere hours after they detonate. This breakthrough, detailed in the Journal of Cosmology and Astroparticle Physics (JCAP), promises to revolutionize our understanding of these cataclysmic stellar explosions, as per the Institute of Space Sciences

Adapted image of a host galaxy of the supernovae sample of the study (Image Source: | Galbany et al)
Adapted image of a host galaxy of the supernovae sample of the study. (Image Source: ICE-CSIC | Galbany et al)

Traditionally, the sudden and unpredictable nature of supernovae made them difficult to observe in their earliest moments. However, because of the new generation of high-cadence sky surveys that discover new supernovae almost daily, researchers can now act quickly. The new study, a pilot program using observations from the Gran Telescopio de Canarias (GTC), demonstrates a targeted protocol for capturing the initial light spectra from these events, often within 24 to 48 hours of eruption. 

The world’s largest single aperture optical telescope is the 10.4-m diameter Gran Telescopio Canarias telescope, located at the El Roque de los Muchachos Observatory (Image Source: Instituto de Astrofísica de Canarias)
The world’s largest single-aperture optical telescope is the 10.4-m diameter Gran Telescopio Canarias telescope, located at the El Roque de los Muchachos Observatory. (Image Source: Instituto de Astrofísica de Canarias)

Supernovae are the explosive ends of a star's life, but they come in two main types. Thermonuclear supernovae occur when a white dwarf, the dense remnant of a low-mass star, siphons matter from a companion star in a binary system. The added mass increases internal pressure to a critical point, triggering a thermonuclear explosion. In contrast, core-collapse supernovae are the fate of massive stars, those over eight times the mass of our sun. Once these stars exhaust their nuclear fuel, their cores collapse under gravity, unleashing a powerful explosion that blasts the star apart.

According to study lead author Lluís Galbany, an astrophysicist at ICE-CSIC, the first hours after an explosion are critical. This "first light" contains direct clues about the star that died and the environment it existed in, helping scientists validate competing models of stellar evolution. To achieve this, the team's new protocol leverages modern wide-field surveys that continuously scan the sky. When a new light source is detected within a galaxy that was not present the night before, the protocol is triggered. This prompts a swift follow-up with the OSIRIS instrument on the GTC to capture the supernova's spectrum. This spectral data reveals vital information, such as the presence of hydrogen, which helps clarify the supernova's type.

This is the remnant of Kepler’s supernova, the famous explosion that was discovered by Johannes Kepler in 1604 (Image Source: NASA/JPL-Caltech)
This is the remnant of Kepler’s supernova, the famous explosion that was discovered by Johannes Kepler in 1604 (Image Source: NASA/JPL-Caltech)

The pilot study successfully captured data from ten supernovae, most of which were observed within 6 days of explosion, with two observed in under 48 hours. These rapid-fire observations, combined with photometry from other observatories like the Zwicky Transient Facility (ZTF) and the Asteroid Terrestrial-impact Last Alert System (ATLAS), provide a detailed picture of the star's initial brightness curve. Small fluctuations in this curve can even hint at the presence of a companion star that was consumed in the blast, as mentioned on ICE-CSIC

The researchers believe this pilot program proves that even faster observations are possible. The successful coordination of spectroscopic and photometric surveys sets a new standard, paving the way for systematic studies of the earliest supernova phases. “We now know that a rapid-response spectroscopic program, well coordinated with deep photometric surveys, can realistically collect spectra within a day of the explosion, paving the way for systematic studies of the very earliest phases in forthcoming large surveys such as the La Silla Southern Supernova Survey (LS4) and the Legacy Survey of Space and Time (LSST), both in Chile," Galbany concludes. 

MORE STORIES

With its sharp observation and wide-field view, Euclid has already found more than 1.2 million large galaxies and obtained details of their morphology.
3 days ago
Scientists came to the conclusion by comparing data from NASA's Curiosity rover with that from rock formations in the UAE desert.
4 days ago
The ExoMars Trace Gas Orbiter captured evidence of dust avalanches on the slopes of Mars' Apollinaris Mons.
Nov 10, 2025
Researchers have discovered COMs frozen in ice near a protostar in the Large Magellanic Cloud.
Nov 7, 2025
The Tianwen-1 orbiter successfully imaged the object from a remarkable distance of approximately 30 million kilometers as it traversed the solar system.
Nov 7, 2025
Analyzing late March data from Solar Orbiter, researchers produced the first detailed map of the magnetic network and supergranulation at the Sun's south pole.
Nov 6, 2025
Located only 56 million light-years away in Ursa Major, NGC 4102 gives astronomers a nearby target to study how these active cores impact their host galaxies.
Nov 4, 2025
The particle shower is forecasted to occur between October 30 and November 6, based on predictions from the new computer model, 'Tailcatcher.'
Oct 22, 2025
Astrophysicist Avi Loeb confirmed the CaSSIS image of 3I/ATLAS, a 'fuzzy ball of light,' is consistent with prior Hubble Space Telescope observations.
Oct 8, 2025
The JunoCam instrument captured these images from just 930 miles (1,500 kilometers) above Io, providing scientists with unprecedented views of the moon.
Oct 7, 2025