Astronomers discover smallest dark matter clump ever — yet it has a mass a million times greater than our sun's

Dark matter is an invisible, enigmatic substance that makes up about 85% of the universe's total mass yet remains undetectable because it does not interact with light.
UPDATED OCT 14, 2025
This composite image captured using NASA's Hubble Space Telescope and Chandra X-ray Observatory and the ground-based Giant Magellan Telescope shows the Bullet Cluster, a pair of galaxy clusters that collided (Representative Cover Image Source: NASA)
This composite image captured using NASA's Hubble Space Telescope and Chandra X-ray Observatory and the ground-based Giant Magellan Telescope shows the Bullet Cluster, a pair of galaxy clusters that collided (Representative Cover Image Source: NASA)

An international astronomy team has pinpointed what may be the smallest pure concentration of dark matter ever detected, a crucial finding that strongly supports standard theories of galaxy formation, as per Universe Today



 

The invisible, enigmatic substance known as dark matter constitutes roughly 85% of the universe’s total matter but remains undetectable by conventional means, as it does not interact with light. Its existence is inferred solely through its powerful gravitational effects on visible cosmic structures like galaxies and galaxy clusters. A collaborative team, led by Dr. Devon Powell of the Max Planck Institute for Astrophysics, successfully isolated a minuscule dark matter clump, weighing approximately one million times the mass of our Sun. This object is located a staggering 10 billion light-years from Earth, providing a glimpse into the universe when it was only 6.5 billion years old.

Overlay of the infrared emission (black and white) with the radio emission (colour). The dark, low-mass object is located at the gap in the bright part of the arc on the right-hand side (Image Source: Keck/EVN/GBT/VLBA)
Overlay of the infrared emission (black and white) with the radio emission (colour). The dark, low-mass object is located at the gap in the bright part of the arc on the right-hand side (Image Source: Keck/EVN/GBT/VLBA)

The discovery was facilitated by coordinating radio observatories across continents, from the United States to Europe, to create a virtual, Earth-sized telescope. The researchers leveraged gravitational lensing, a phenomenon predicted by Einstein's Theory of General Relativity, where a massive foreground object warps spacetime, bending the light of objects behind it. While observing a system designated B1938+666, the team identified a subtle "pinch" or distortion within the gravitational arc known as an Einstein ring. This minute deformation could only be attributed to a previously unseen concentration of mass, the dark matter clump, situated between the observatories and the background galaxy. 

The zoom in shows the pinch in the luminous radio arc, where the extra mass from the dark object is gravitationally ‘imaged’ using the sophisticated modeling algorithms of the team (Image Source: Keck/EVN/GBT/VLBA)
The zoom in shows the pinch in the luminous radio arc, where the extra mass from the dark object is gravitationally ‘imaged’ using the sophisticated modeling algorithms of the team (Image Source: Keck/EVN/GBT/VLBA)

As Dr. Powell detailed in the journal Nature Astronomy, the methodology involved using distant galaxies as "backlights" to find the invisible mass through its gravitational "fingerprint." Analyzing the immense data requires developing new computational methods and running them on supercomputers. The team effectively photographed the invisible object using a technique termed "gravitational imaging."

In this computer simulation, we see a region of the universe wherein a low-density “void” (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white) (Cover Image Source: AAS Nova)
In this computer simulation, we see a region of the universe wherein a low-density “void” (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white) (Representative Image Source: AAS Nova)

Crucially, the identification of this tiny dark concentration provides significant validation for the prevailing cold dark matter (CDM) theory of galaxy formation. This theory posits that dark matter is composed of slow-moving particles that began clumping together via gravity in the early universe, forming small structures that eventually merged into the larger galaxies and clusters observed today. The detection of such a small clump supports the prediction that dark matter is not smoothly distributed but aggregates into discrete, hierarchical structures.

Scientists expect similar dark matter clumps to be ubiquitous, filling the halos of all galaxies, including our own Milky Way. The next phase of research will focus on locating more of these structures to determine if their observed numbers continue to align with theoretical models. Future discrepancies could necessitate revisions to current theories on dark matter's fundamental nature.

Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars (Cover Image Source: NASA/JPL-Caltech)
Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars (Image Source: NASA/JPL-Caltech)

The international search for smaller dark matter structures is set to receive a significant boost from NASA's Nancy Grace Roman Space Telescope, scheduled to begin operations in 2027. The telescope is specifically designed to utilize the same technique of gravitational lensing, the distortion of light by massive cosmic objects, a phenomenon predicted by Albert Einstein's Theory of General Relativity, that led to the recent discovery. By precisely measuring how mass warps the fabric of time and space, Roman will provide critical new data, allowing astronomers to investigate the enduring mystery of dark matter's distribution and fundamental properties on an unprecedented scale.

More on Starlust

Black hole shadows could finally help detect the universe’s 'invisible' dark matter, say scientists

Black hole shadows could finally help detect the universe’s 'invisible' dark matter, say scientists

MORE STORIES

The celestial event this month is a rare one, with the Moon retreating to an apogee from Earth's center.
1 hour ago
The three interstellar objects are unique, billion-year-old fragments and kinetic artifacts collected from countless extrasolar systems across the galaxy.
4 hours ago
English physicist and science communicator Professor Brian Cox draws parallels between the journey of 3I/ATLAS and that undertaken by humanity.
9 hours ago
Conspiracy theories can be put to rest as new evidence from the MeerKAT radio telescope has emerged.
1 day ago
Consecutive X-class solar flares have set the stage for severe space weather to strike on November 11 and 12.
1 day ago
The observation, made on November 9, unveiled a shockingly complex jet system that overshadows prior data, immediately casting doubt on the comet's origin.
2 days ago
The object, discovered by Gennady Borisov on November 2, 2025, quickly became the focus of speculation amid the curiosity surrounding 3I/ATLAS.
2 days ago
To assess Martian viability, scientists subjected yeast cells to Mach 5.6 shock waves and the corrosive perchlorate salts common on the Red Planet.
6 days ago
These impacts pack surprising power; a mere 11-pound meteoroid can blast a 30-foot (9-meter) crater, ejecting 75 metric tons of lunar soil.
6 days ago
Sunspot AR3474 detonated with an X1.8 solar flare on November 4, sending an ultraviolet wave silencing South America's shortwave radio communications.
7 days ago