NASA’s Perseverance rover investigating Mars’ megaripples makes fascinating discovery

The Perseverance rover is now studying the modern effects of wind and water on Mars, beginning with a key investigation of wind-formed megaripples at 'Kerrlaguna.'
PUBLISHED AUG 25, 2025
NASA’s Perseverance rover fires up its descent stage engines as it nears the Martian surface to land in the area known as Jezero crater on the planet Mars (Cover Image Source: Getty | NASA)
NASA’s Perseverance rover fires up its descent stage engines as it nears the Martian surface to land in the area known as Jezero crater on the planet Mars (Cover Image Source: Getty | NASA)

NASA's Perseverance rover has shifted its focus from ancient rock formations to the ever-changing Martian landscape, making a key discovery about the planet's modern environment. The rover recently completed an investigation of inactive "megaripples," large, wind-formed dunes, at a site called "Kerrlaguna." This marks a new phase in its mission to understand the forces of wind and water currently shaping the Red Planet, as per NASA

NASA's Mars Perseverance rover acquired this image of inactive megaripples at “Kerrlaguna,” Perseverance’s latest target of exploration, on Aug. 13, 2025 (Image Source: NASA/JPL-Caltech/ASU)
NASA's Mars Perseverance rover acquired this image of inactive megaripples at “Kerrlaguna,” Perseverance’s latest target of exploration, on Aug. 13, 2025 (Image Source: NASA/JPL-Caltech/ASU)

Previously, the rover's journey south was complicated by steep, rocky terrain, which hindered its progress toward a new rock formation named "Midtoya." While the direct path was abandoned, the effort was not in vain. Perseverance successfully collected data on new, spherule-rich rocks that had rolled downhill, including a unique, helmet-shaped specimen nicknamed "Horneflya" that has generated significant online interest.

The rover is now studying megaripples up to one meter tall at "Kerrlaguna," using instruments like the SuperCam, Mastcam-Z, and MEDA to analyze the sand grains and any salty crusts that have formed. This research builds on past work by the Curiosity rover, which studied an active dune nearly a decade ago. Unlike those active dunes, the older, immobile megaripples at "Kerrlaguna" offer a unique perspective on the long-term effects of wind on the Martian surface.

SuperCam's mast unit before being installed atop the Perseverance rover's remote sensing mast (Image Source: CNES)
SuperCam's mast unit before being installed atop the Perseverance rover's remote sensing mast (Image Source: CNES)

Beyond the scientific insights, data from this investigation could be vital for future human missions. The ability to document potential resources within Martian soil will be crucial for helping astronauts survive and thrive on the planet. The successful campaign at "Kerrlaguna" is considered a trial run for a more extensive study planned for a larger field of dunes at "Lac de Charmes," further along the rover’s path.

Martian soil collected by NASA's Mars rover Curiosity at a sandy patch called Rocknest (Representative Image Source: NASA)
Martian soil collected by NASA's Mars rover Curiosity at a sandy patch called Rocknest (Representative Image Source: NASA)

In addition to its geological studies, the Perseverance rover has captured a breathtaking panoramic image of the Martian landscape. The stunning mosaic, composed of 96 individual photos, was taken at a spot called "Falbreen" and offers an apparent view of the Jezero Crater rim. The panorama provides an unprecedented level of detail, highlighting everything from a nearby rock that appears to be "floating" on a sand ripple to hills visible up to 40 miles away. Scientists are captivated by the crispness of the images, which reveal a clear boundary between two different types of rock. An enhanced-color version of the photo also shows the typically red Martian sky as a surprisingly clear blue.



 

Acting NASA Administrator Sean Duffy spoke to the significance of the image, connecting the rover's discoveries to the future of human space exploration. "Stunning vistas like that of Falbreen, captured by our Perseverance rover, are just a glimpse of what we’ll soon witness with our own eyes," Duffy said. "NASA’s groundbreaking missions, starting with Artemis, will propel our unstoppable journey to take human space exploration to the Martian surface."

The choice of Jezero Crater as the landing site for Perseverance was a result of a rigorous five-year global study, according to NASA. The mission team and scientists from around the world meticulously evaluated over 60 potential locations on the Red Planet, each with unique characteristics. Ultimately, Jezero was selected for its strong evidence of a watery past, with scientists believing the crater was once a lake fed by an ancient river delta. This ancient history makes Jezero the ideal location to search for signs of past microbial life.

MORE STORIES

Hubble’s legacy meets perfect timing as an astrophotographer captures a rare solar transit.
5 hours ago
The maneuver was scheduled for much earlier but was delayed on account of lower-than-expected thrust during burn attempts.
6 hours ago
The International Space Station is not just a hub for scientific experiments and international cooperation, but also a unique vantage point for breathtaking images.
Dec 31, 2025
From planet nurseries to cosmic rings, James Webb’s 2025 images reveal the universe in stunning detail.
Dec 26, 2025
The Hubble Space Telescope has provided some of the most beautiful visuals of the cosmos over the years, and this year was no different.
Dec 25, 2025
Time is running out for the recovery team before Earth and Mars move to opposite sides of the Sun on December 29, triggering a total communications blackout.
Dec 24, 2025
The particular Starlink satellite suffered an anomaly, resulting in a loss of communication with the ground on December 17, 2025.
Dec 24, 2025
Scientists are hoping for the image to aid in learning more about what happened right after the Big Bang.
Dec 24, 2025
From late October through mid-November 2025, the PUNCH satellite captured a dramatic sequence of the comet's tail twisting and reacting to powerful solar activity.
Dec 22, 2025
The collisions involved planetesimals, which are rocky building blocks of planets.
Dec 22, 2025