Twin spiral 'arms' caught feeding a black hole in the Circinus galaxy

Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
PUBLISHED OCT 14, 2025
The magenta spots in this image show two black holes in the Circinus galaxy: the supermassive black hole at its heart, and a smaller one closer to the edge (Cover Image Source: NASA/JPL)
The magenta spots in this image show two black holes in the Circinus galaxy: the supermassive black hole at its heart, and a smaller one closer to the edge (Cover Image Source: NASA/JPL)

A supermassive black hole, long theorized as a "messy eater," has had its exact feeding mechanism mapped out, revealing an unexpected dual-arm structure funneling gas directly to the cosmic behemoth. The finding, which challenges traditional disk-only accretion models, was spearheaded by PhD candidate Wout Goesaert during his prior master's research, according to Leiden University.

Circinus Galaxy Spews Gas Into Space (Image Source: NASA)
Circinus Galaxy Spews Gas Into Space (Image Source: NASA)

The team analyzed archival observations from the Atacama Large Millimeter/submillimeter Array (ALMA), focusing on the Circinus Galaxy, a relatively close neighbor situated just 13 million light-years away. Although only discovered in 1977 due to its concealment behind the Milky Way's disc, the galaxy's core provided a clear view of black hole activity. Goesaert and his collaborators utilized advanced modeling techniques on the 2023 ALMA data, confirming the existence of two distinct spiral arms actively transporting cold gas inward. This observation moves beyond the simplified "whirlpool" visualization of an accretion disc.

Wout Goesaert mapped how molecular gas is distributed in the Circinus galaxy, about 13 million light-years away (Image Source: ESA)
Wout Goesaert mapped how molecular gas is distributed in the Circinus galaxy, about 13 million light-years away (Image Source: ESO)

"In cartoons, you sometimes see a disc of gas disappearing into a black hole as if it were a whirlpool. However, if there is no supply channel, such a disc will continue to spin around at a decent distance forever," Goesaert explained. "So you need a passageway of some kind. And that’s where our spiral arms come into play." 

This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light (Image Source: NASA/Caltech-IPAC | Robert Hurt)
This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light (Representative Image Source: NASA/Caltech-IPAC | Robert Hurt)

The research went forward despite an initial publication on the same data by a competing group. Violette Impellizzeri, Goesaert's supervisor at ASTRON, noted, "We decided not to give up and delved deeper into the subject, searching for more details." The perseverance paid off. By incorporating additional ALMA observations and employing more complex models, the team calculated that the gas within the arms is rushing toward the center at speeds up to 150,000 kilometers per hour.

Crucially, the study determined that the black hole is far from efficient, with at most 12% of the inflowing matter actually crossing the event horizon. The vast majority is ejected back into space before being consumed. The groundbreaking results immediately prompt new questions for astronomers: Why is the consumption rate so low? Is this twin-spiral arm structure common to all supermassive black holes? And what is the ultimate fate of the ejected material? Does it fall back, or does it trigger new star formation?

This is a still image of the animation showing Gaia’s star-formation map in 3D (Image Source: ESA/Gaia/DPAC | S. Payne-Wardenaar,)
This is a still image of the animation showing Gaia’s star-formation map in 3D (Representative Image Source: ESA/Gaia/DPAC | S. Payne-Wardenaar)

Researchers are now setting their sights on follow-up observations using next-generation instruments like the Event Horizon Telescope (EHT) and the powerful Extremely Large Telescope (ELT) currently under construction in Chile to unlock the broader implications of this unusual feeding habit.

The Extremely Large Telescope (ELT) will sit on top of Cerro Armazones, approximately 3046 metres high in Chile’s Atacama Desert, surrounded by breathtaking views of the plains below (Image Source: ESO)
The Extremely Large Telescope (ELT) will sit on top of Cerro Armazones, approximately 3046 metres high in Chile’s Atacama Desert, surrounded by breathtaking views of the plains below (Image Source: ESO)

Further observations, including those from the NASA Hubble Space Telescope, paint a vivid picture of the Circinus Galaxy's core, which has been described as a "swirling witch's cauldron of glowing vapors" powered by the central black hole, as per NASA Science.

Astronomers classify Circinus as a Type 2 Seyfert galaxy, a category of often spiral-shaped galaxies characterized by their compact, intensely bright nuclei believed to harbor supermassive black holes. Seyferts are a subset of Active Galactic Nuclei (AGN), objects known for their immense energy output and ability to eject vast amounts of gas from their centers at phenomenal speeds. The evidence gathered confirms that the black hole in Circinus is indeed a powerful AGN, actively influencing its galactic environment by violently venting material, a process now better understood thanks to the detection of the twin spiral feeding arms.

More on Starlust

ALMA captures stunning evidence of cosmic tug-of-war between gravity and magnetic fields during star birth

Black hole shadows could finally help detect the universe’s 'invisible' dark matter, say scientists

MORE STORIES

Comet 3I/ATLAS might have stolen all the headlines, but it's far from the only comet that has been discovered this year.
3 days ago
The discovery throws light on how giant or dying stars behave with their surroundings and other objects around them. 
7 days ago
Scientists have spotted a red dwarf star about 130 light-years away ejecting an enormous amount of material into space.
Nov 13, 2025
A black hole has a huge mass packed into an infinitely tiny space.
Nov 13, 2025
The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
Nov 11, 2025
Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
Nov 11, 2025
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
Nov 5, 2025
Researchers analyzing JWST observations of LAP1-B determined the distant galaxy exhibits properties consistent with the earliest, hypothesized stars.
Nov 5, 2025
Generated during the initial camera commissioning in June 2025, the discovery stems from the observatory's Virgo First Look images.
Oct 31, 2025