Hear the sound of a dying star with the sonification of Crab Nebula's Pulsar heart

Scientists have transformed X-ray data from the Crab Nebula's rapidly spinning pulsar into an auditory experience.
PUBLISHED JUL 28, 2025
Observatories Combine to Crack Open the Crab Nebula (Cover Image Source: NASA Image and Video Library | NASA)
Observatories Combine to Crack Open the Crab Nebula (Cover Image Source: NASA Image and Video Library | NASA)

Astronomers have converted X-ray data from the Crab Nebula's rapidly spinning pulsar into an auditory experience, offering a unique "sonification" of the remnants of a titanic stellar explosion. This innovative project allows the public to "hear" the cosmic lighthouse-like rotation of a neutron star located 6,500 light-years away, according to NASA Chandra

The eerie glow of a dead star, which exploded long ago as a supernova, reveals itself in this NASA Hubble image of the Crab Nebula ()
The eerie glow of a dead star, which exploded long ago as a supernova, reveals itself in this NASA Hubble image of the Crab Nebula (Image Source: NASA Image and Video Library | NASA)

The Crab Nebula, also known as Messier 1, is the spectacular aftermath of a supernova observed by astronomers in 1054, as per NASA. At its core lies a super-dense neutron star, the collapsed core of the exploded star, which completes approximately 30 rotations every second. Each rotation sweeps a beam of radiation across Earth, much like a celestial beacon. This sonification translates X-ray information captured by NASA's Chandra X-ray observatory and the Nuclear Spectroscopic Array (NuSTAR) telescopes into sound. As a virtual scan progresses from left to right across the nebula's image, the intensity of the X-ray data directly influences the volume of the generated sound. 

Different methods were employed to determine the pitch for each telescope's data. For NuSTAR, distinct musical pitches were assigned to various color-coded regions within the X-ray image, with lower notes corresponding to red and progressively higher notes for yellow, purple, blue, and white. In contrast, the Chandra data utilizes the brightness of detected X-rays to dictate both pitch and volume, with brighter X-rays producing higher-pitched sounds. A distinct bell-like tone marks the precise locations of the pulsar, the inert core left behind after the star's catastrophic collapse. 

This innovative technique of data sonification has also been applied to the Vela Pulsar, another rapidly spinning neutron star located significantly closer to Earth, at a distance of about 1,000 light-years. This pulsar is the direct result of a supernova explosion that occurred roughly 10,000 years ago. For the Vela Pulsar's sonification, experts translated its data into a radar-like scan that moves clockwise from the midnight position of the image. Here, the pulsar's brightness dictates the volume of the sound, while its distance from the center of the image directly correlates with the pitch; objects farther away produce higher-pitched audio. 



 

The Chandra X-ray data from Vela revealed a bright inner region, depicted in violet, which was mapped to a low-synth sound. This sound incorporates 11 Hz oscillations, aligning with the pulsar's prominent jets, which were rendered with a wind-like sound. Listeners can discern the long upper jet approximately four seconds into the composition, with a shorter, brighter lower jet becoming audible around the 20-second mark. Furthermore, Hubble Space Telescope data depicting stars within the Vela Pulsar's field were also incorporated. These stars were mapped to notes played on a plucked-type synthesizer. Brighter stars register as louder notes, and those situated at a greater distance from the center of the image are represented by higher-pitched sounds. 

Beyond the scientific insights they provide, projects like the Crab Nebula and Vela Pulsar sonifications highlight the growing importance of data sonification in astronomy. This process translates complex digital information, such as cosmic imagery and observational data, into auditory experiences. Sonification serves as a powerful medium for communicating the vastness and intricate details of the cosmos by engaging a sense beyond sight. This approach significantly broadens the audience for astronomical discoveries, making celestial events and telescope data accessible to blind and visually impaired individuals. 

MORE STORIES

For the study, the researchers analyzed 214 of the most massive stars in the Milky Way.
2 days ago
NASA’s TESS tracked the interstellar comet during a special observation period from January 15 to 22, 2026.
3 days ago
While Mercury was quite active in its early days, it has been perceived as dead for a long time because of the static appearance of its surface.
3 days ago
A new paper is looking into the possibility of the collision being a reality and the kind of scientific opportunities it might present.
4 days ago
The ghostly matter co-evolved with regular matter that makes up the visible universe.
5 days ago
How nutrients from Europa's icy shell reach its ocean has been unclear despite several theories.
6 days ago
Earlier research held that meteorite impacts from the solar system's early days were a major source of Earth's water.
6 days ago
The early universe has a lot more massive black holes than suspected.
6 days ago
The Solar Orbiter's observation was a huge step in understanding the mechanism behind powerful solar flares.
Jan 23, 2026
The other two known interstellar comets did not offer such an opportunity.
Jan 22, 2026