Astronomers say 'invisible' asteroids near Venus pose a 'real risk' of collision with Earth

Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
PUBLISHED SEP 24, 2025
Illustration of asteroids approaching Earth (Representative Cover Image Source: Getty | VICTOR HABBICK VISIONS/SCIENCE PHOTO LIBRARY)
Illustration of asteroids approaching Earth (Representative Cover Image Source: Getty | VICTOR HABBICK VISIONS/SCIENCE PHOTO LIBRARY)

An international team of scientists has sounded the alarm on a hidden population of asteroids that could one day pose a catastrophic risk to Earth. These objects, which share Venus's orbit, are currently "invisible" to our most powerful telescopes due to their unique position and orbital paths, as per Eurasia Review

 3d animation of Earth and asteroids in space. Elements of this image furnished by NASA (Representative Cover Image Source: Getty | mikdam)
3d animation of Earth and asteroids in space. Elements of this image furnished by NASA (Representative  Image Source: Getty | mikdam)

The study, led by astronomer Valerio Carruba of São Paulo State University, reveals a class of asteroids in a 1:1 orbital resonance with Venus, meaning they complete a revolution around the sun in the same time as our neighboring planet. Unlike the well-documented asteroids in the Main Belt between Mars and Jupiter, these "Venusian co-orbitals" are extremely difficult to detect. Their orbits are often low in eccentricity, keeping them close to the sun, where they are obscured by its glare from Earth-based observatories.

Field of asteroids with space background and a glowing, orange, shiny star (Representative Image Source: Getty | Maciej Frolow)
Field of asteroids with space background and a glowing, orange, shiny star (Representative Image Source: Getty | Maciej Frolow)

The danger, according to the research published in Astronomy & Astrophysics, lies in the dynamic nature of these asteroids. While they may be stable in Venus's orbit for extended periods, they are known to undergo chaotic transitions. During these phases, which occur roughly every 12,000 years, their orbits can shift dramatically, bringing them perilously close to Earth.

The study's simulations show that some of these objects could come within a statistically tiny distance of our planet, leading to potential impacts on a millennial timescale. An asteroid just 300 meters in diameter could create a massive crater and release the energy equivalent of hundreds of megatons, capable of devastating a major city. Carruba warns that "during these transition phases, the asteroids can reach extremely small distances from Earth’s orbit, potentially crossing it." He also notes that "asteroids about 300 meters in diameter, which could form craters 3 to 4.5 kilometers wide and release energy equivalent to hundreds of megatons, may be hidden in this population. An impact in a densely populated area would cause large-scale devastation.”

This is the first full picture showing both asteroid 243 Ida and its newly discovered moon to be transmitted to Earth from the National Aeronautics and Space Administration's (NASA's) Galileo spacecraft (Cover Image Source: NASA Image and Video Library | NASA)
This is the first full picture showing both asteroid 243 Ida and its newly discovered moon to be transmitted to Earth from the National Aeronautics and Space Administration's (NASA's) Galileo spacecraft (Representative Image Source: NASA Image and Video Library | NASA)

Current asteroid defense systems, including new observatories like the Vera Rubin Observatory in Chile, are ill-equipped to track these stealthy threats. The study found that even the brightest of these asteroids would only be visible for a few weeks at a time, with long periods of invisibility in between. “Such asteroids can remain invisible for months or years and appear for only a few days under very specific conditions. This makes them effectively undetectable with Vera Rubin’s regular programs,” Carruba reveals, as mentioned by the outlet

View of Rubin Observatory at sunset in May 2024. The 8.4-meter Simonyi Survey Telescope at Rubin Observatory, equipped with the LSST camera, the largest digital camera in the world, will take enormous images of the Southern Hemisphere sky, covering the entire sky every few nights (Image Source: SLAC National Accelerator Laboratory |  Olivier Bonin)
The 8.4-meter Simonyi Survey Telescope at Rubin Observatory, equipped with the LSST camera, the largest digital camera in the world, will take enormous images of the Southern Hemisphere sky, covering the entire sky every few nights (Image Source: SLAC National Accelerator Laboratory | Olivier Bonin)

The solution, Carruba suggests, may require a new approach. He points to missions like NASA's Neo Surveyor, which could use space-based telescopes to scan regions of the sky closer to the sun. “Planetary defense needs to consider not only what we can see, but also what we can’t yet see,” Carruba stated. The findings underscore a critical gap in our current planetary defense strategy and the urgent need for new methods to detect and track these elusive objects.

More on Starlust

A 'quasi-moon' asteroid has been orbiting Earth for 60 years—and scientists are just finding out

'God of Chaos' asteroid would be visible to the naked eye in a once-in-a-millennium celestial event

Giant asteroid 2025 RL2 to make closest approach to Earth this week—when and how to watch

MORE STORIES

From a sauna world to one where it rains glass, exoplanets are stranger than science fiction.
3 days ago
Triple systems like this are rare, but are essential to observe hierarchical galaxy evolution.
Dec 25, 2025
The largest protoplanetary disk ever has been found by the Hubble Space Telescope and is quite active as materials stretch in the system.
Dec 24, 2025
The astronomer looked into the possibility of materials from 3I/ATLAS hitting Earth following the comet's closest approach.
Dec 23, 2025
NASA scientists have finally pinpointed the source of mysterious radiation from a supermassive black hole, solving a puzzle that has lasted for years.
Dec 17, 2025
Webb uncovers evidence of giant primordial stars that may explain how early black holes formed less than a billion years after the Big Bang.
Dec 16, 2025
Smaller black holes tend to attract less material, making them naturally dimmer. Chandra would miss many of these faint objects.
Dec 15, 2025
The data suggest this small, super-hot world is shrouded in a thick layer of gas, likely hovering above a planet-wide ocean of magma.
Dec 13, 2025
The region around black holes was not thought to be conducive to star formation, yet research proved otherwise.
Dec 12, 2025