Astronomers finally spotted what they were searching for decades—1st coronal mass ejection from another star

Scientists have spotted a red dwarf star about 130 light-years away ejecting an enormous amount of material into space.
PUBLISHED 2 HOURS AGO
An artist’s impression of a large red star releasing a bright, explosive burst of light. Swirling red and orange patterns surround the star, suggesting intense activity (Representative Cover Image Source: ESA)
An artist’s impression of a large red star releasing a bright, explosive burst of light. Swirling red and orange patterns surround the star, suggesting intense activity (Representative Cover Image Source: ESA)

Astronomers have hit a major milestone, confirming the first clear sighting of a powerful stellar explosion, a coronal mass ejection (CME), on a star that's not our Sun, according to the European Space Agency



They used data from the European Space Agency's XMM-Newton space observatory and the LOFAR radio telescope to track a massive amount of material being blasted into space by a red dwarf star about 130 light-years away. While we know CMEs, which are huge bursts of stellar material that affect space weather, happen regularly on the Sun, actual proof of them happening on distant stars has been a challenge for astronomers for years. "Previous findings have inferred that they exist, or hinted at their presence, but haven’t actually confirmed that material has definitively escaped out into space," said Joe Callingham, the lead author from the Netherlands Institute for Radio Astronomy (ASTRON), whose study was published in Nature. "We’ve now managed to do this for the first time."

An artist's impression of XMM-Newton (Image Source: ESA)
An artist's impression of XMM-Newton (Representative Image Source: ESA)

The breakthrough came from spotting a quick, intense burst of radio waves. This signal comes from the shock wave generated as the CME moved through the outer layers of the star and into interplanetary space. Importantly, this signal verifies that the material has made it out of the star's strong magnetic grip, which is a telltale sign of a CME event.

CCOR-1 monitors the corona to forecast coronal mass ejections (CMEs), which are large expulsions of plasma and magnetic fields from the sun that can produce space weather impacts on Earth (Image Source: NOAA)
CCOR-1 monitors the corona to forecast coronal mass ejections (CMEs), which are large expulsions of plasma and magnetic fields from the sun that can produce space weather impacts on Earth (Image Source: NOAA)

The star in question is a highly active red dwarf. It's smaller, cooler, and dimmer than our Sun, but it's rotating 20 times faster and has a magnetic field that's 300 times stronger. This type of star is the most common one hosting planets in the Milky Way. The analysis showed that the CME was zooming along at an incredible speed of 2400 kilometers per second, which is pretty rare for solar CMEs. Such a fast and dense ejection could strip away the atmospheres of any planets that are close by.

Astronomers have found two so-called super-Earths orbiting the star, dubbing them Gliese 887 b and c. (Representative Image Source: Getty Images | Photo by MARK GARLICK/SCIENCE PHOTO LIBRARY)
Astronomers have found two so-called super-Earths orbiting the star, dubbing them Gliese 887 b and c. (Representative Image Source: Getty Images | Photo by MARK GARLICK/SCIENCE PHOTO LIBRARY)

This discovery raises some serious concerns for the search for life. A planet might sit in its star's "habitable zone," where liquid water could theoretically exist, but if it gets hit regularly by these intense stellar storms, it could end up as a lifeless rock. "It seems that intense space weather may be even more extreme around smaller stars – the primary hosts of potentially habitable exoplanets," noted Henrik Eklund, an ESA research fellow. "This has important implications for how these planets keep hold of their atmospheres and possibly remain habitable over time."

In another recent study, scientists analyzing data from the European Space Agency's (ESA) Solar Orbiter have published the first clear analysis of magnetic field motion near the Sun's often-obscured south pole, a region absolutely critical to unlocking the mechanics of the Sun's fundamental 11-year activity cycle. The new data is essential not just for improving predictions of our own Sun's space weather.

More on Starlust

Triple coronal mass ejections are headed to Earth and could trigger auroras in northern skies

Solar Orbiter cracks one of the Sun's secret codes by tracing origins of superspeed electrons

MORE STORIES

A black hole has a huge mass packed into an infinitely tiny space.
9 hours ago
The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
2 days ago
Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
2 days ago
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
7 days ago
Researchers analyzing JWST observations of LAP1-B determined the distant galaxy exhibits properties consistent with the earliest, hypothesized stars.
Nov 5, 2025
Generated during the initial camera commissioning in June 2025, the discovery stems from the observatory's Virgo First Look images.
Oct 31, 2025
The findings confirm the presence of rare binary systems and suggest certain black holes are second-generation, forged in earlier cosmic collisions.
Oct 29, 2025
New research suggests a massive black hole is the primary force preventing Segue 1's small complement of stars from drifting into the void.
Oct 28, 2025
The rocky exoplanet GJ 251 c, estimated to be nearly four times the mass of Earth, has been classified as a 'super-Earth.'
Oct 24, 2025
Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
Oct 14, 2025