Rogue planet 10 times Jupiter's mass found devouring six billion tons of gas and dust every second

Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
PUBLISHED 2 HOURS AGO
An artist’s impression shows Cha 1107-7626. Located about 620 light-years away, this rogue planet is about 5-10 times more massive than Jupiter and doesn’t orbit a star (Cover Image Source: ESO)
An artist’s impression shows Cha 1107-7626. Located about 620 light-years away, this rogue planet is about 5-10 times more massive than Jupiter and doesn’t orbit a star (Cover Image Source: ESO)

Astronomers have captured a "rogue" planet, untethered by any stellar orbit, undergoing the most extreme accretion event ever recorded for a world of its size. According to ESO, the free-floating object, estimated to be up to ten times Jupiter's mass, is violently drawing in gas and dust at a staggering rate of six billion tonnes every second, an intake eight times faster than it was just months prior. 

The stunning observation, detailed in The Astrophysical Journal Letters, was made using the European Southern Observatory's Very Large Telescope (VLT) in Chile, with supplementary data from the James Webb Space Telescope. The object, officially designated Cha 1107-7626, is located approximately 620 light-years away in the constellation Chamaeleon. “People may think of planets as quiet and stable worlds, but with this discovery, we see that planetary-mass objects freely floating in space can be exciting places,” said lead author Víctor Almendros-Abad, an astronomer at the National Institute for Astrophysics (INAF) in Italy. 

This infrared image, taken with ESO’s Visible and Infrared Telescope for Astronomy (VISTA), shows the position in the sky of the rogue planet Cha 1107-7626 (Image Source: ESO | L. Calçada)
This infrared image, taken with ESO’s Visible and Infrared Telescope for Astronomy (VISTA), shows the position in the sky of the rogue planet Cha 1107-7626 (Image Source: ESO | L. Calçada)

The intense feeding frenzy offers crucial evidence in solving a long-standing cosmic mystery: the true origin of rogue planets. These solitary worlds are either massive planets violently ejected from their young star systems or the lowest-mass objects that formed independently, much like stars. The current findings strongly suggest the latter. Bursts of accretion, like the one observed, are a characteristic feature of young stars, not traditionally planets. 

This visible-light image, part of the Digitized Sky Survey 2, shows the position in the sky of the rogue planet Cha 1107-7626. The planet (not visible here) is located exactly at the centre of the frame (Image Source: ESO | Digitized Sky Survey 2)
This visible-light image, part of the Digitized Sky Survey 2, shows the position in the sky of the rogue planet Cha 1107-7626. The planet (not visible here) is located exactly at the centre of the frame (Image Source: ESO | Digitized Sky Survey 2)

“This discovery blurs the line between stars and planets,” noted co-author Belinda Damian of the University of St Andrews. Intriguingly, the data indicate that magnetic activity is playing a significant role in driving the colossal infall of material, a mechanism previously only observed in forming stars. Furthermore, the chemistry of the surrounding disc dramatically changed during the burst, with water vapor detected, another phenomenon previously exclusive to young stars. 

AI-generated image of a young free-floating planetary-mass object surrounded by a dusty disk (Representative Cover Image Source: University of St Andrews)
AI-generated image of a young free-floating planetary-mass object surrounded by a dusty disk (Representative Image Source: University of St Andrews)

The identification of such powerful magnetic fields on a low-mass object, according to Almendros-Abad's team, provides a "sneak peek into the earliest formation periods of rogue planets." The discovery highlights the challenges in tracking these faint, isolated worlds, but astronomers anticipate that the upcoming Extremely Large Telescope (ELT) will revolutionize the study of these "lonely planets" and further illuminate how star-like they truly are. 

The Extremely Large Telescope (ELT) will sit on top of Cerro Armazones, approximately 3046 metres high in Chile’s Atacama Desert, surrounded by breathtaking views of the plains below (Image Source: ESO)
The Extremely Large Telescope (ELT) will sit on top of Cerro Armazones, approximately 3046 metres high in Chile’s Atacama Desert, surrounded by breathtaking views of the plains below (Image Source: ESO)

In a separate but related breakthrough on the nature of these isolated worlds, the James Webb Space Telescope (JWST) has provided the most precise atmospheric analysis to date of another searing-hot, free-floating world, SIMP-0136. Astronomers from Trinity College Dublin leveraged JWST's sensitivity to map changes in the planet's temperature and chemical composition as it rotated. The key discovery was the presence of intense auroras, similar to the Northern Lights on Earth and Jupiter, that are dramatically heating the planet's upper atmosphere. By tracking minuscule variations in brightness, researchers were able to create a groundbreaking "weather report" for SIMP-0136, further establishing the powerful influence of magnetic activity on rogue planet environments.

More on Starlust

Webb Telescope makes 'invaluable discovery' solving mysteries of Moon formation from distant worlds

Astrophysicists reveal 'Earth-sized' exoplanet TRAPPIST-1e may have atmosphere and liquid water to support life

Dark Energy Camera captures Chamaeleon I, a star-forming cloud — and it looks like a celestial painting

MORE STORIES

These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
27 minutes ago
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
6 days ago
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
Sep 19, 2025
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
Sep 15, 2025
While astronomers were observing Quaoar on June 25, 2025, a solid object unexpectedly blocked out the starlight for 1.23 seconds.
Sep 14, 2025