New study identifies hundreds of previously undocumented satellite systems orbiting dwarf galaxies

Rather than focusing on large galaxies like the Milky Way, a new survey dramatically shifts the focus to dwarf galaxies.
UPDATED 3 DAYS AGO
The Milky Way has a number of satellite galaxies, but the biggest one is the Large Magellanic Cloud (Representative Cover Image Source: NASA)
The Milky Way has a number of satellite galaxies, but the biggest one is the Large Magellanic Cloud (Representative Cover Image Source: NASA)

A groundbreaking new study led by astronomers at Dartmouth has vastly expanded our knowledge of galactic ecosystems, identifying hundreds of potential satellite galaxies orbiting dwarf galaxies. The multi-institutional team's findings, published in The Astrophysical Journal, challenge existing assumptions about how these smaller galaxies are formed and how they interact with their environments, according to Dartmouth

Candidate satellite galaxies for a dwarf galaxy called ESO486-G21 (Image Source: Dartmouth | Laura Hunter)
Candidate satellite galaxies for a dwarf galaxy called ESO486-G21 (Image Source: Dartmouth | Laura Hunter)

Traditionally, most research on galactic satellites has focused on large galaxies, such as the Milky Way. However, this new survey dramatically shifts the focus to dwarf galaxies, systems that are less than a tenth the size of our galaxy. The study nearly triples the number of dwarf galaxies that have been surveyed for satellites, providing a massive new dataset for astronomers to analyze. 

Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make billions more stars, and at least ten times as much dark matter as all the stars and gas put together (Cover Image Source: NASA)
Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make billions more stars, and at least ten times as much dark matter as all the stars and gas put together (Image Source: NASA)

The survey identified 355 candidate satellite galaxies, with 264 of these being previously uncatalogued. Researchers suggest that 134 of the candidates are highly likely to be true satellite galaxies. “This project fills a critical gap, offering fresh insights into the process of how galaxies form and their connection to dark matter," said author Burçin Mutlu-Pakdil, an assistant professor of physics and astronomy." Our goal is to build a statistical sample of the smallest galaxies in the universe, as they are the most dominated by dark matter and serve as clean laboratories for understanding its nature.” 

The survey, led by postdoctoral fellow Laura Hunter, analyzed publicly available imaging data from the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys. The team used an algorithm to identify potential satellites and then visually inspected each candidate to ensure accuracy. By studying these systems, the research aims to unlock clues about conditions in the early universe and how galaxies evolve. Previous studies of larger galaxies have suggested a correlation between a host galaxy's size and the number of satellites it possesses. The new data will enable scientists to test whether this principle applies to the much smaller dwarf galaxies. 

Hubble displays a dwarf spiral galaxy (Image Source: NASA/ESA)
Hubble displays a dwarf spiral galaxy (Image Source: NASA/ESA)

Hunter explains, “Astronomy is a field where you can’t run experiments; all you can do is observe and make as many measurements as you can," and "then put that data into a simulation and see whether it reproduces your observations. If it doesn’t, that tells us that there’s something wrong with our assumptions or our model of the universe.” This new survey is the initial phase of a broader effort. The research team is currently conducting a follow-up campaign to confirm the candidates and analyze their properties, such as size, gas content, and star formation rates. This work is expected to have a significant impact on our understanding of dark matter and the formation of galaxies on the smallest scale. 

The Dartmouth team's work to understand how galactic interactions influence satellite formation is complemented by detailed observations of individual systems. A prime example is the dwarf galaxy NGC 4449, which the NASA/ESA Hubble Space Telescope recently focused on. Located just 12.5 million light-years away in the constellation Canes Venatici, this small but mighty galaxy is a prime example of a "starburst galaxy," a system undergoing an extraordinary period of star creation. The dwarf galaxy's proximity to Earth makes it an ideal cosmic laboratory for studying how these gravitational encounters fuel the creation of new stars and shape galactic evolution, providing a valuable case study for the statistical data gathered by the Dartmouth team. 

MORE STORIES

The celestial giant is 10,000 times more massive than the Milky Way's black hole and pushes the theoretical size limit.
13 hours ago
A team of researchers estimated the crash occurred between 0.35 and 1.03 million years ago, a timeline that aligns with the ages of young stars in the area.
2 days ago
The pictures taken from a location called 'Falbreen' reveal Mars' unusually clear skies and a variety of geological features that intrigue scientists.
2 days ago
This unexpected discovery suggests that the lives of nascent stars and their planetary systems are much more violent and chaotic than we ever thought.
4 days ago
Using observations from the James Webb Space Telescope (JWST), researchers investigated isolated celestial objects with masses five to ten times that of Jupiter.
4 days ago
The findings suggest these skyscraper-sized formations could encircle up to 60% of the planet's surface.
5 days ago
Black holes produce 'ringing' vibrations when they are disturbed, such as during mergers.
6 days ago
The rare celestial event is not an official astronomical term, but a calendrical one that describes an infrequent type of New Moon that isn't visible.
6 days ago
The new models are challenging established ideas about electron temperatures in this extreme cosmic environment.
7 days ago
'We have never before observed a structure in the OJ 287 galaxy at the level of detail seen in the new image,' said one of the researchers.
Aug 2, 2025