Jupiter's early growth reshaped the solar system and delayed the birth of Earth's rocky building blocks

A study resolves a longstanding paradox by showing that Jupiter's powerful gravitational influence carved distinct rings and gaps into the nascent solar system's disk.
PUBLISHED 14 HOURS AGO
A digital illustration of Jupiter (Representative Cover Image Source: Getty Images | Artur Debat)
A digital illustration of Jupiter (Representative Cover Image Source: Getty Images | Artur Debat)

New findings from Rice University planetary scientists offer a dramatic explanation for the formation timeline of some of the solar system’s most primitive rocky materials, asserting that the rapid early growth of the gas giant Jupiter was the key factor. The research, published in Science Advances, uses advanced computer models to show that Jupiter's immense gravitational influence carved rings and gaps into the nascent solar system’s disk of gas and dust, resolving a longstanding paradox in planetary science, according to Rice University

Launched April 6, 1973, Pioneer 11 was the second spacecraft to observe Jupiter close up (Image Source: NASA)
Launched April 6, 1973, Pioneer 11 was the second spacecraft to observe Jupiter close up (Image Source: NASA)

According to the study, led by planetary scientists André Izidoro and Baibhav Srivastava, Jupiter's swift emergence generated powerful ripples throughout the surrounding disk, effectively creating "cosmic traffic jams." This process countered the natural inward spiral of small particles toward the Sun. Instead, these particles clustered into dense bands, regions where they could aggregate into planetesimals, the rocky precursors to planets. 

Moons around Jupiter (Image Source: NASA Image and Video Library | NASA)
Moons around Jupiter (Image Source: NASA Image and Video Library | NASA)

Crucially, the planetesimals formed in these bands were not the solar system's original foundation. Researchers suggest they represent a second generation of solids, born millions of years after the very first solids. This delayed birth is directly linked to the formation of many chondrites, stony meteorites that carry essential chemical and chronological data from the solar system's dawn. “Chondrites are like time capsules from the dawn of the solar system,” explained Izidoro, an assistant professor of Earth, environmental, and planetary sciences at Rice. "The mystery has always been: Why did some of these meteorites form so late, 2 to 3 million years after the first solids? Our results show that Jupiter itself created the conditions for their delayed birth.”

A unique metal-rich Chondrite (Image Source: Astrobiology at NASA)
A unique metal-rich Chondrite (Image Source: Astrobiology at NASA)

The research also provides a compelling mechanism for the stable location of the inner, terrestrial planets, Earth, Mars, and Venus. The models indicate that Jupiter’s growth effectively restricted the flow of gas and material toward the Sun, preventing the inward migration often observed in exoplanetary systems. This allowed the young worlds to remain in the habitable zone, where Earth and its neighbors eventually settled. “Jupiter didn’t just become the biggest planet — it set the architecture for the whole inner solar system,” Izidoro stated. “Without it, we might not have Earth as we know it.” 

Artistic representation of the planet Jupiter.
(Representative Image Source: Getty Images | Nemes Laszlo | Science Photo Library.)
Artistic representation of the planet Jupiter. (Representative Image Source: Getty Images | Nemes Laszlo | Science Photo Library.)

The findings are consistent with the ring-and-gap structures currently observed by the ALMA telescope in young star systems, underscoring that the history of our own solar system was no exception. Srivastava, a graduate student on the team, noted that their model successfully connects previously disparate observations, including the distinct isotopic fingerprints found in meteorites and the dynamic processes of planet formation. The research was partially supported by the National Science Foundation (NSF).

Like a celestial blanket the Milky Way forms an arc high above the antennas of the Atacama Large Millimeter/submillimeter Array (Image Source: ALMA Observatory)
Like a celestial blanket the Milky Way forms an arc high above the antennas of the Atacama Large Millimeter/submillimeter Array (Image Source: ALMA Observatory)

In an intriguing parallel development, astronomers are now leveraging an unusual celestial object to probe the hidden atmospheric chemistry deep within the gas giants Jupiter and Saturn. For years, experts have puzzled over the near-absence of silicon, one of the universe’s most prevalent elements, in the visible atmospheres of these and similar planets. A recent study published in the journal Nature utilized observations from NASA’s James Webb Space Telescope (JWST) to directly address this mystery. The mission received an unexpected assist from a peculiar object, appropriately nicknamed “The Accident,” which was stumbled upon by chance in 2020. This unique object is now helping researchers unlock why silicon remains undetected in the deep, turbulent clouds of our solar system's colossal planets.

More on Starlust

Scientist says heliostats could help detect asteroids at night: 'We can help find near-Earth objects'

MORE STORIES

Captured at the Teide Observatory in Spain's Canary Islands, the composite image was created by stacking 159 separate 50-second exposures.
1 day ago
An asteroid, designated 2025 PN7, has effectively become a long-term 'quasi-moon' to Earth.
2 days ago
Astronomers are highly interested in the new asteroid 2025 SC79, which is notable for both its exceptionally fast orbit and its position in our planet's vicinity.
2 days ago
Retrieved in June 2024, the lunar dust holds rare meteorite relics that give scientists an unfiltered view of the bombardment that shaped the early Earth and Moon.
2 days ago
A long-overdue solar blast struck, delivering a powerful hit to Earth and the newly discovered Comet Lemmon (C/2025 A6), causing a dramatic, though temporary, separation of the comet's tail.
3 days ago
Researchers at the University of York now propose that the elusive substance could leave a subtle, detectable red or blue 'fingerprint' on light.
4 days ago
Researchers led by a team at MIT identified a unique chemical signature in ancient rocks pulled from deep within the Earth, including samples from Greenland, Canada, and the Hawaiian mantle.
5 days ago
Led by the Curtin University-based ICRAR, an international team of astronomers has ruled out a 'cold start' for the Epoch of Reionisation, a crucial, little-explored era in cosmic history.
Oct 17, 2025
Discovered by ATLAS in July 2025, the interstellar comet 3I/ATLAS is only the third such visitor ever observed in our solar system.
Oct 17, 2025
By compiling signals from the Einstein Probe and the Russian Konus-Wind spectrometer, scientists verified the unprecedented phenomenon.
Oct 16, 2025