ALMA captures first-ever video of spiraling dust around a young star

For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
PUBLISHED SEP 26, 2025
Artist’s impression of planet formation around a young star, showing spiral patterns which help the young planets to form (Cover Image Source: YouTube | ALMAJapanChannel)
Artist’s impression of planet formation around a young star, showing spiral patterns which help the young planets to form (Cover Image Source: YouTube | ALMAJapanChannel)

An international team of researchers has achieved a world-first by successfully producing a time-lapse video revealing the dynamic action inside a planet-forming region, offering an unprecedented look at the moments just before a planet is born, as per ALMA



 

Led by graduate student Tomohiro Yoshida of SOKENDAI and the National Astronomical Observatory of Japan (NAOJ), the team utilized seven years of data from the Atacama Large Millimeter/submillimeter Array (ALMA) to construct the footage. The resulting video clearly demonstrates the winding motion of a spiral structure within a protoplanetary disk, which is theorized to be a crucial incubator for nascent planets. While thousands of exoplanets have been discovered, the precise mechanism by which planets emerge from the swirling gas and dust of a protoplanetary disk, the dense, rotating cloud surrounding a young star, remains a major question in astrophysics.

A key feature in these disks is the presence of spiral arms. However, these spirals pose an observational challenge because they can be formed in two ways: either by the disk's own gravitational influence before planet formation, or by the presence of a massive, newly-formed planet after formation has begun. Without being able to differentiate the two, scientists struggled to pinpoint the true onset of planetary growth. The research team overcame this hurdle by relying on a theoretical prediction: Spirals created by the disk's gravity will dynamically wind and eventually dissipate, while those caused by an established planet will maintain a static shape and simply rotate with the planet.

To test this, the researchers focused on the protoplanetary disk surrounding the young star IM Lupi, a system with a long-debated spiral feature. By stitching together four sets of high-resolution ALMA images captured between 2017 and 2024, they created a sequential view of the disk's evolution. The analysis revealed the spiral arms were, in fact, exhibiting a pronounced winding motion. Furthermore, the measured winding speed precisely matched the rate predicted by the theory for a self-gravitating spiral, as mentioned by the outlet

ALMA observations of the spiral patterns in the disk around the young star IM Lup (Image Source: ALMA(ESO/NAOJ/NRAO)
ALMA observations of the spiral patterns in the disk around the young star IM Lup (Image Source: ALMA(ESO/NAOJ/NRAO)

This definitive finding strongly indicates that the structure in the IM Lupi disk is not the result of an already-formed planet. Instead, it confirms the disk is currently in the pre-planetary phase, a perfect location for studying the initial accretion process. “When I saw the outcome of the analysis —the dynamic visualization of the spiral in motion— I screamed with excitement," said Tomohiro Yoshida, the lead researcher. He credited the stability and performance of the ALMA telescope for making the long-term observation possible. The team now plans to apply this methodology to other disks, aiming to construct a "documentary" of the entire planetary system formation process.

This finding provides a direct glimpse into the origins of planets, including our own Earth, answering fundamental questions about how solar systems are created. By better understanding planet formation, scientists can refine models for detecting and characterizing potentially habitable exoplanets around other stars. 

More on Starlust

ALMA's sharpest photo suggests Fomalhaut star's warped ring was sculpted by 'yet-to-be-seen' ancient planets

Protoplanetary disks are not so flat after all, suggests compelling evidence from ALMA

NASA just confirmed 6,000 alien worlds—and 8,000 more waiting to be verified

MORE STORIES

The Subaru Telescope discovered a unique quasar that was shining bright in two kinds of waves despite its continuous growth.
21 hours ago
HH 80/81, as captured by the Hubble telescope in the latest image, are the brightest Herbig-Haro (HH) objects known to exist.
4 days ago
This newly discovered explosion from the dawn of time is helping scientists map the chemical evolution of the first galaxies.
7 days ago
The galaxy in question dates back to about 3 billion years after the Big Bang.
Jan 13, 2026
'We're still trying to figure out why black holes are suddenly more common in galaxies like our own,' said one of the scientists.
Jan 12, 2026
The four planets orbit a very young star, V1298 Tau, and have already lost much of their atmospheres.
Jan 8, 2026
Astronomers detect the earliest known galaxy cluster gas from just 1.4 billion years after the Big Bang.
Jan 8, 2026
The James Webb Space Telescope has identified massive, short-lived stars that are essentially 'seeds' for the universe's first supermassive black holes.
Jan 7, 2026