ALMA captures first-ever video of spiraling dust around a young star

For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
PUBLISHED SEP 26, 2025
Artist’s impression of planet formation around a young star, showing spiral patterns which help the young planets to form (Cover Image Source: YouTube | ALMAJapanChannel)
Artist’s impression of planet formation around a young star, showing spiral patterns which help the young planets to form (Cover Image Source: YouTube | ALMAJapanChannel)

An international team of researchers has achieved a world-first by successfully producing a time-lapse video revealing the dynamic action inside a planet-forming region, offering an unprecedented look at the moments just before a planet is born, as per ALMA



 

Led by graduate student Tomohiro Yoshida of SOKENDAI and the National Astronomical Observatory of Japan (NAOJ), the team utilized seven years of data from the Atacama Large Millimeter/submillimeter Array (ALMA) to construct the footage. The resulting video clearly demonstrates the winding motion of a spiral structure within a protoplanetary disk, which is theorized to be a crucial incubator for nascent planets. While thousands of exoplanets have been discovered, the precise mechanism by which planets emerge from the swirling gas and dust of a protoplanetary disk, the dense, rotating cloud surrounding a young star, remains a major question in astrophysics.

A key feature in these disks is the presence of spiral arms. However, these spirals pose an observational challenge because they can be formed in two ways: either by the disk's own gravitational influence before planet formation, or by the presence of a massive, newly-formed planet after formation has begun. Without being able to differentiate the two, scientists struggled to pinpoint the true onset of planetary growth. The research team overcame this hurdle by relying on a theoretical prediction: Spirals created by the disk's gravity will dynamically wind and eventually dissipate, while those caused by an established planet will maintain a static shape and simply rotate with the planet.

To test this, the researchers focused on the protoplanetary disk surrounding the young star IM Lupi, a system with a long-debated spiral feature. By stitching together four sets of high-resolution ALMA images captured between 2017 and 2024, they created a sequential view of the disk's evolution. The analysis revealed the spiral arms were, in fact, exhibiting a pronounced winding motion. Furthermore, the measured winding speed precisely matched the rate predicted by the theory for a self-gravitating spiral, as mentioned by the outlet

ALMA observations of the spiral patterns in the disk around the young star IM Lup (Image Source: ALMA(ESO/NAOJ/NRAO)
ALMA observations of the spiral patterns in the disk around the young star IM Lup (Image Source: ALMA(ESO/NAOJ/NRAO)

This definitive finding strongly indicates that the structure in the IM Lupi disk is not the result of an already-formed planet. Instead, it confirms the disk is currently in the pre-planetary phase, a perfect location for studying the initial accretion process. “When I saw the outcome of the analysis —the dynamic visualization of the spiral in motion— I screamed with excitement," said Tomohiro Yoshida, the lead researcher. He credited the stability and performance of the ALMA telescope for making the long-term observation possible. The team now plans to apply this methodology to other disks, aiming to construct a "documentary" of the entire planetary system formation process.

This finding provides a direct glimpse into the origins of planets, including our own Earth, answering fundamental questions about how solar systems are created. By better understanding planet formation, scientists can refine models for detecting and characterizing potentially habitable exoplanets around other stars. 

More on Starlust

ALMA's sharpest photo suggests Fomalhaut star's warped ring was sculpted by 'yet-to-be-seen' ancient planets

Protoplanetary disks are not so flat after all, suggests compelling evidence from ALMA

NASA just confirmed 6,000 alien worlds—and 8,000 more waiting to be verified

MORE STORIES

Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
2 days ago
An international research collective has serendipitously discovered an ultra-luminous infrared galaxy (ULIRG), a system intensely forming stars, hidden behind the distant and well-known Cloverleaf quasar, H1413+117.
3 days ago
Researchers focused on the quasar OJ287, an intensely bright galactic core whose erratic light patterns had long suggested the presence of a pair of orbiting black holes.
6 days ago
The asteroid's orbit is highly elliptical (stretched-out), causing it to take approximately 2.65 years (967 days) to complete one trip around the Sun.
7 days ago
On February 13, 2023, the KM3NeT underwater telescope registered the high-energy 'ghost particle.'
Oct 8, 2025
These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
Oct 3, 2025
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
Oct 3, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025