Stunning new study claims Mars may have supported life longer than initially suspected

Scientists came to the conclusion by comparing data from NASA's Curiosity rover with that from rock formations in the UAE desert.
PUBLISHED NOV 14, 2025
An illustrated image of Mars in space (Representative Cover Image Source: Getty | SCIEPRO)
An illustrated image of Mars in space (Representative Cover Image Source: Getty | SCIEPRO)

A study published in Nature Communications last year suggested that Mars’ magnetic field may have lasted until about 3.9 billion years ago, rather than ending 4.1 billion years ago. The updated timeline meant that the presence of the magnetic field overlapped with the era when Mars was covered in water, potentially giving life a chance to emerge. Now, another study published in the Journal of Geophysical Research—Planets in November 2025 has found evidence suggesting that Mars may have sustained life longer than previously suspected, thanks to the presence of subsurface water.

The Echus Chasma, one of the largest water source regions on Mars, pictured from ESA's Mars Express. (Image Source: ESA via Getty Images)
The Echus Chasma, one of the largest water source regions on Mars, pictured from ESA's Mars Express. (Image Source: ESA via Getty Images)

The study shows that ancient sand dunes in Gale Crater, explored by NASA’s Curiosity rover, gradually turned into rock after coming in contact with underground water billions of years ago. “Our findings show that Mars didn’t simply go from wet to dry,” said Dimitra Atri, the principal investigator at New York University Abu Dhabi’s Space Exploration Laboratory. “Even after its lakes and rivers disappeared, small amounts of water continued to move underground, creating protected environments that could have supported microscopic life.”

The Mars Science Laboratory mission's Curiosity rover landed in Mars' Gale Crater the evening of August 5, 2012 (Image Source: NASA Jet Propulsion Laboratory |)
The Mars Science Laboratory mission's Curiosity rover landed in Mars' Gale Crater the evening of August 5, 2012 (Image Source: NASA Jet Propulsion Laboratory |)

Per the press release from NYUD, Atri, research assistant Vignesh Krishnamoorthy, and team did a comparative study of the data from Curiosity and that from rock formations in the UAE desert that formed under similar conditions on Earth. Results showed that water from a Martian mountain located close by made its way into the dunes via tiny cracks, soaking the sand from below and leaving behind minerals such as gypsum, which is also the mineral found in the deserts on our planet. With the ability to trap and preserve traces of organic material, these minerals could prove to be crucial in determining how the Red Planet evolved over epochs and highlight how subsurface environments could potentially bear signs of ancient life.

Curiosity Rover (Image Source: NASA/JPL/Caltech)
Curiosity Rover (Image Source: NASA/JPL/Caltech)

In their paper published in The Astrophysical Journal Letters, Chenyu Ding at Shenzhen University, China, and team presented the first evidence of karstic caves on Mars. Thus far, the majority of Martian caves discovered have been lava tubes. However, according to the researchers, the newly discovered ones represent “collapse entrances formed through the dissolution of water-soluble lithologies—defining a new cave-forming class distinct from all previously reported volcanic and tectonic skylights.”

Regional context and geospatial distribution of potential karstic skylight features in Hebrus Valles, Mars. (Image Source: The Astrophysical Journal Letters 2025. DOI: 10.3847/2041-8213/ae0f1c)
Regional context and geospatial distribution of potential karstic skylight features in Hebrus Valles, Mars. [Image Source: The Astrophysical Journal Letters (2025). DOI: 10.3847/2041-8213/ae0f1c]

Unlike impact craters that are usually surrounded by raised rims and ejected debris around them, these caves, located in the Hebrus Valles, eight pits in a northwestern region mapped by previous Mars missions, are deep and predominantly circular depressions, indicating that they may have been formed when ancient Martian water dissolved carbonate- and sulfate-laden rocks on the crust. It’s a process not too different from the formation of karstic caves here on Earth.

Conceptual model illustrating water-driven karstic cave development and subsurface habitability potential in Hebrus Valles, Mars. (Representative Image Source: The Astrophysical Journal Letters (2025) DOI: 10.3847/2041-8213/ae0f1c)
Conceptual model illustrating water-driven karstic cave development and subsurface habitability potential in Hebrus Valles, Mars. [Representative Image Source: The Astrophysical Journal Letters (2025). DOI: 10.3847/2041-8213/ae0f1c]

The researchers concluded this when they found that the rocks surrounding the pits are, in fact, rich in carbonates and sulfates by examining the data taken from the Thermal Emission Spectrometer (TES) onboard NASA’s Mars Global Surveyor.

NASA's Perseverance (Mars 2020) rover will store rock and soil samples in sealed tubes on the planet's surface for future missions to retrieve in the area known as Jezero crater on the planet Mars. (Representative Photo illustration by NASA via Getty Images)
NASA's Perseverance (Mars 2020) rover will store rock and soil samples in sealed tubes on the planet's surface for future missions to retrieve in the area known as Jezero crater on the planet Mars. (Representative Photo illustration by NASA via Getty Images)

As a result, these eight possible karstic caves could be high-priority targets for future robotic or human missions aiming to look for traces of life on Mars. And even if no life is found there, they could serve as natural shelters protecting astronauts from the harsh conditions on the Red Planet.

More on Starlust

ESA’s ExoMars captures massive dust avalanches on Mars triggered by a meteoroid impact

New research suggests common baker's yeast could withstand harsh conditions on Mars

MORE STORIES

From planet nurseries to cosmic rings, James Webb’s 2025 images reveal the universe in stunning detail.
12 hours ago
The Hubble Space Telescope has provided some of the most beautiful visuals of the cosmos over the years, and this year was no different.
1 day ago
Time is running out for the recovery team before Earth and Mars move to opposite sides of the Sun on December 29, triggering a total communications blackout.
2 days ago
The particular Starlink satellite suffered an anomaly, resulting in a loss of communication with the ground on December 17, 2025.
2 days ago
Scientists are hoping for the image to aid in learning more about what happened right after the Big Bang.
2 days ago
From late October through mid-November 2025, the PUNCH satellite captured a dramatic sequence of the comet's tail twisting and reacting to powerful solar activity.
4 days ago
The collisions involved planetesimals, which are rocky building blocks of planets.
4 days ago
A flexible new wheel design could help rovers survive steep drops and harsh terrain inside lunar lava tubes.
6 days ago
The Europa Clipper imaged the comet when Earth-based observation was not possible.
7 days ago
Operators lost contact with the satellite on December 17 when it was at an altitude of 418 kilometers.
7 days ago