Martian craters reveal long term decline in water on the Red Planet, new study claims

Scientists have long tried to pinpoint the forces that turned a potentially water-rich Mars into the arid world we see today.
PUBLISHED OCT 10, 2025
The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a "fresh" impact crater in the Sirenum Fossae region of Mars on March 30, 2015 (Cover Image Source: NASA/JPL)
The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a "fresh" impact crater in the Sirenum Fossae region of Mars on March 30, 2015 (Cover Image Source: NASA/JPL)

A new scientific investigation, detailed in the Geology journal, has unearthed compelling evidence from the depths of Martian craters, suggesting the Red Planet's abundant water reserves have been on a steady decline for hundreds of millions of years, as per Phys.org

Mars craterfill deposits showing
varying intensities and
topographies (cross sections) (Image Source: Geology Journal | T. Ruj | T. Usui)
Mars craterfill deposits showing varying intensities and topographies (cross sections) (Image Source: Geology Journal | T. Ruj | T. Usui)

Scientists have long sought to understand the mechanisms behind Mars' transition from a potentially water-rich world to the arid landscape observed today. This study offers a frozen, chronological record, revealing a history of recurrent ice ages where the total volume of deposited ice progressively shrank. The research, led by Associate Professor Trishit Ruj of Okayama University, Japan, alongside a team including Dr. Hanaya Okuda, Dr. Hitoshi Hasegawa, and Professor Tomohiro Usui, focused on glacial landforms within craters between 20∘N and 45∘N latitude. Their work reconstructed the planet's water storage and loss mechanisms over time. 

sksksks
Distribution of multi-stage craterfill deposits on Mars (Image Source: Geology Journal | T. Ruj | T. Usui)

By analyzing high-resolution imagery from NASA's Mars Reconnaissance Orbiter, the team identified tell-tale signs of glaciation, such as moraines (glacial debris piles) and distinctive brain terrain (a pitted, maze-like surface). The images showed ice consistently congregating on the colder, shaded southwestern walls of these craters, a pattern consistent across various glacial epochs spanning from approximately 640 million to 98 million years ago.

NASA's Mars Reconnaissance Orbiter searches for evidence that water persisted on the surface of Mars for a long period of time (Image Source: NASA)
NASA's Mars Reconnaissance Orbiter searches for evidence that water persisted on the surface of Mars for a long period of time (Image Source: NASA)

The central finding is that Mars experienced multiple, cyclical ice ages. Unlike Earth, Mars' axial tilt (obliquity) undergoes dramatic shifts over millennia, which trigger these cycles of ice accumulation and melt by drastically redistributing solar energy. However, as Dr. Ruj noted, the volume of ice deposited during each of these repeated cycles steadily diminished. These craters, acting as "time capsules," not only document the planet's gradual desiccation but also pinpoint key locations for potential future resource extraction.

The European Space Agency's (ESA's) Mars Express obtained this view of an unnamed impact crater located on Vastitas Borealis, a broad plain that covers much of Mars's far northern latitudes (Cover Image Source: NASA)
The European Space Agency's (ESA's) Mars Express obtained this view of an unnamed impact crater located on Vastitas Borealis, a broad plain that covers much of Mars's far northern latitudes (Image Source: NASA)

The significance of these findings extends to both space exploration and terrestrial climate science. The detailed mapping of these long-lived ice deposits is crucial for in-situ resource utilization (ISRU), a concept vital for sustaining human missions. Buried ice could be harvested for drinking water, converted to breathable oxygen, or split into hydrogen and oxygen for use as rocket fuel, as Professor Usui highlighted. This ability to "live off the land" would be transformative for making long-duration crewed missions to Mars more feasible and cost-effective, as mentioned by the outlet

Furthermore, the study provides a planetary-scale analogue for climate change. According to Dr. Hasegawa, Mars functions as a "natural laboratory" for observing how vast water systems respond to long-term environmental shifts. The advanced imaging and modeling techniques deployed in this Martian research can be applied to monitoring terrestrial phenomena, such as melting glaciers, permafrost, and hidden water reservoirs on Earth, helping scientists sharpen their understanding of our own planet's changing climate. In essence, the evidence of multi-stage glaciations paints a vivid picture of a planet that once alternated between periods of icy abundance, only to witness its frozen reserves inexorably diminish, a history that offers critical lessons for charting humanity’s future both on Earth and beyond. 

More on Starlust

Mars like you've never seen: Surreal images from NASA's Perseverance rover

Mars has one more thing in common with Earth—scientists finally resolve a longstanding mystery

NASA discovers rocky lumps in the Mars mantle, evidence of a violent past with impacts and quakes

MORE STORIES

The SuperCam's microphone unexpectedly picked up the signals from two dust devils.
4 hours ago
Comet C/2025 K1 ATLAS, an Oort Cloud object found by ATLAS in May, skimmed past the Sun on October 8 at 31 million miles.
8 hours ago
Harvard astronomer Avi Loeb thinks that the nature of the two tails implies a mass loss that is not visible in 3I/ATLAS.
1 day ago
Unlike geology on Earth, which is driven by the movement of deep rock, the action on icy moons is powered by the dynamics of water and ice.
1 day ago
After a decade focused on simple 'biosignatures,' researchers are increasingly pivoting the search for alien life toward detecting technological output.
2 days ago
After the big collision, Theia's traces could be found in the composition of the Earth and the Moon.
2 days ago
Amateur astronomers Michael Jäger and Gerald Rhemann used a standard 12-inch telescope and a specialized camera to capture the extraordinary color image.
3 days ago
The reason we often imagine the Sun as yellow or orange has to do with the air around us rather than with the Sun itself.
3 days ago
Researchers claim that this could pave the way for basic ecosystems outside of Earth.
6 days ago
The Harvard astrophysicist seems unimpressed with the revelations made by NASA, as he wanted the space agency to answer more questions.
6 days ago