Martian craters reveal long term decline in water on the Red Planet, new study claims

Scientists have long tried to pinpoint the forces that turned a potentially water-rich Mars into the arid world we see today.
PUBLISHED OCT 10, 2025
The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a "fresh" impact crater in the Sirenum Fossae region of Mars on March 30, 2015 (Cover Image Source: NASA/JPL)
The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a "fresh" impact crater in the Sirenum Fossae region of Mars on March 30, 2015 (Cover Image Source: NASA/JPL)

A new scientific investigation, detailed in the Geology journal, has unearthed compelling evidence from the depths of Martian craters, suggesting the Red Planet's abundant water reserves have been on a steady decline for hundreds of millions of years, as per Phys.org

Mars craterfill deposits showing
varying intensities and
topographies (cross sections) (Image Source: Geology Journal | T. Ruj | T. Usui)
Mars craterfill deposits showing varying intensities and topographies (cross sections) (Image Source: Geology Journal | T. Ruj | T. Usui)

Scientists have long sought to understand the mechanisms behind Mars' transition from a potentially water-rich world to the arid landscape observed today. This study offers a frozen, chronological record, revealing a history of recurrent ice ages where the total volume of deposited ice progressively shrank. The research, led by Associate Professor Trishit Ruj of Okayama University, Japan, alongside a team including Dr. Hanaya Okuda, Dr. Hitoshi Hasegawa, and Professor Tomohiro Usui, focused on glacial landforms within craters between 20∘N and 45∘N latitude. Their work reconstructed the planet's water storage and loss mechanisms over time. 

sksksks
Distribution of multi-stage craterfill deposits on Mars (Image Source: Geology Journal | T. Ruj | T. Usui)

By analyzing high-resolution imagery from NASA's Mars Reconnaissance Orbiter, the team identified tell-tale signs of glaciation, such as moraines (glacial debris piles) and distinctive brain terrain (a pitted, maze-like surface). The images showed ice consistently congregating on the colder, shaded southwestern walls of these craters, a pattern consistent across various glacial epochs spanning from approximately 640 million to 98 million years ago.

NASA's Mars Reconnaissance Orbiter searches for evidence that water persisted on the surface of Mars for a long period of time (Image Source: NASA)
NASA's Mars Reconnaissance Orbiter searches for evidence that water persisted on the surface of Mars for a long period of time (Image Source: NASA)

The central finding is that Mars experienced multiple, cyclical ice ages. Unlike Earth, Mars' axial tilt (obliquity) undergoes dramatic shifts over millennia, which trigger these cycles of ice accumulation and melt by drastically redistributing solar energy. However, as Dr. Ruj noted, the volume of ice deposited during each of these repeated cycles steadily diminished. These craters, acting as "time capsules," not only document the planet's gradual desiccation but also pinpoint key locations for potential future resource extraction.

The European Space Agency's (ESA's) Mars Express obtained this view of an unnamed impact crater located on Vastitas Borealis, a broad plain that covers much of Mars's far northern latitudes (Cover Image Source: NASA)
The European Space Agency's (ESA's) Mars Express obtained this view of an unnamed impact crater located on Vastitas Borealis, a broad plain that covers much of Mars's far northern latitudes (Image Source: NASA)

The significance of these findings extends to both space exploration and terrestrial climate science. The detailed mapping of these long-lived ice deposits is crucial for in-situ resource utilization (ISRU), a concept vital for sustaining human missions. Buried ice could be harvested for drinking water, converted to breathable oxygen, or split into hydrogen and oxygen for use as rocket fuel, as Professor Usui highlighted. This ability to "live off the land" would be transformative for making long-duration crewed missions to Mars more feasible and cost-effective, as mentioned by the outlet

Furthermore, the study provides a planetary-scale analogue for climate change. According to Dr. Hasegawa, Mars functions as a "natural laboratory" for observing how vast water systems respond to long-term environmental shifts. The advanced imaging and modeling techniques deployed in this Martian research can be applied to monitoring terrestrial phenomena, such as melting glaciers, permafrost, and hidden water reservoirs on Earth, helping scientists sharpen their understanding of our own planet's changing climate. In essence, the evidence of multi-stage glaciations paints a vivid picture of a planet that once alternated between periods of icy abundance, only to witness its frozen reserves inexorably diminish, a history that offers critical lessons for charting humanity’s future both on Earth and beyond. 

More on Starlust

Mars like you've never seen: Surreal images from NASA's Perseverance rover

Mars has one more thing in common with Earth—scientists finally resolve a longstanding mystery

NASA discovers rocky lumps in the Mars mantle, evidence of a violent past with impacts and quakes

MORE STORIES

To assess Martian viability, scientists subjected yeast cells to Mach 5.6 shock waves and the corrosive perchlorate salts common on the Red Planet.
4 hours ago
These impacts pack surprising power; a mere 11-pound meteoroid can blast a 30-foot (9-meter) crater, ejecting 75 metric tons of lunar soil.
23 hours ago
Sunspot AR3474 detonated with an X1.8 solar flare on November 4, sending an ultraviolet wave silencing South America's shortwave radio communications.
1 day ago
Observations were maintained using imagery from solar imagers on the STEREO-A, SOHO, and GOES-19 missions near the Sun.
3 days ago
PUNCH satellites secured the initial images of the comet, which had just emerged from behind the Sun.
3 days ago
Four weeks after its acquisition on October 2–3, 2025, the vital MRO HiRISE data remains inaccessible to researchers.
3 days ago
JPL navigation engineer Dr. Davide Farnocchia compiled the data that captured the phenomenon as the comet reached perihelion.
6 days ago
NASA, on the other hand, continues to assert that 3I/ATLAS is a comet of natural origin.
7 days ago
The T Coronae Borealis (T CrB) star system is a recurrent nova known for its predictable, massive explosions.
7 days ago
Wormholes, conceptual tunnels slicing through spacetime, offer a theoretical shortcut between two distant cosmic points.
7 days ago