South Pole Telescope detects unexpected intense stellar flares in the heart of the Milky Way

This discovery opens new doors for millimeter astronomy.
PUBLISHED 2 HOURS AGO
The Milky Way is typical: it has hundreds of billions of stars, enough gas and dust to make billions more stars, and at least ten times as much dark matter as all the stars and gas put together (Cover Image Source: NASA)
The Milky Way is typical: it has hundreds of billions of stars, enough gas and dust to make billions more stars, and at least ten times as much dark matter as all the stars and gas put together (Cover Image Source: NASA)

Looking deep into the center of the Milky Way, researchers observed intense bursts of light emanating from a pair of accreting white dwarf systems. This is significant not only because it is the first event of its kind to be detected during a millimeter-wavelength survey but also because it could open more doors into the workings at the center of our galaxy. The findings have been published in The Astrophysical Journal. 

South Pole Telescope view of the center of the Milky Way galaxy. (Image Source: Texas Tech University)
South Pole Telescope view of the center of the Milky Way galaxy. (Image Source: Texas Tech University)

Rather than targeting a scheduled list of candidate objects, the survey used the South Pole Telescope (SPT) to repeatedly scan a massive area of the Galactic Plane, catching the short-lived flares. “We’ve only searched for transients in two years and already found two remarkable events,” said Professor Tom Maccarone, a professor in the Department of Physics and Astronomy at Texas Tech University, in a statement. “We’ve only scratched the surface of what can be done with millimeter transient surveys of the Galactic Plane and are looking forward to discoveries of many more new events in years to come.” 

The footprint of the Galactic Plane field overlaid on Mellinger’s all-sky panorama image of the Milky Way (Image Source: The Astrophysical Journal | Photo by Wan et al.)
The footprint of the Galactic Plane field overlaid on Mellinger’s all-sky panorama image of the Milky Way (Image Source: The Astrophysical Journal | Photo by Wan et al.)

The research team believes that the flares were triggered by sudden magnetic explosions in the accretion flow. This is quite similar to solar flares except that it happens in a much more extreme environment. When it comes to the Sun, stored magnetic energy is converted into heat and energetic particles quickly as a result of magnetic reconnection. On the other hand, in an accretion disk surrounding a compact object, similar things can happen at densities and energies that are much higher, producing luminous but momentary bursts spreading across multiple bands. If confirmed, millimeter observations can provide new insights into the magnetic nature of the accretion disks, dictating how compact binaries evolve, transport angular momentum, and generate outflows.

Illustration of an accreting white dwarf system, similar to the sources detected in Wan et. al. 2026. (Image Source: University of Illinois | Photo by NASA / SAO / CXC / M.Weiss)
Illustration of an accreting white dwarf system, similar to the sources detected in Wan et. al. 2026. (Image Source: University of Illinois | Photo by NASA / SAO / CXC / M.Weiss)

Each burst that was detected lasted for about a day. While the duration was much longer than millisecond radio bursts, they were still short-lived and indicate strict constraints as far as the size and physical properties of the emitting region are concerned. More significantly, these bursts were caught in millimeter bands, which is much less common compared to X-ray or optical detections. The source of the outburst was accreting white dwarfs, as already mentioned. As a white dwarf’s gravity pulls gas from its companion, the material forms a swirling accretion disk, driving the flares across spectrums.

A trail of orange light shooting from the dark space and spiralling in a circle  (Representative Image Source: Unsplash | NASA Hubble Space Telescope)
A trail of orange light shooting from the dark space and spiralling in a circle (Representative Image Source: Unsplash | NASA Hubble Space Telescope)

The SPT-3G Galactic Plane Survey aims to prove that millimeter astronomy can also be a great tool in understanding the more dynamic aspects of our galaxy, besides mapping the static universe. To this effect, it will carry on observing the Milky Way for about a month every year so that a more sensitive time-domain record of the Galactic Center region can be created. 

More on Starlust

Astronomers believe the Milky Way is inside a giant cosmic hole—why it's important for 'Hubble tension'

Evidence of ‘standing shocks’ in black hole accretion flows rewrites our understanding of cosmic signals

MORE STORIES

HH 80/81, as captured by the Hubble telescope in the latest image, are the brightest Herbig-Haro (HH) objects known to exist.
2 days ago
This newly discovered explosion from the dawn of time is helping scientists map the chemical evolution of the first galaxies.
6 days ago
The galaxy in question dates back to about 3 billion years after the Big Bang.
Jan 13, 2026
'We're still trying to figure out why black holes are suddenly more common in galaxies like our own,' said one of the scientists.
Jan 12, 2026
The four planets orbit a very young star, V1298 Tau, and have already lost much of their atmospheres.
Jan 8, 2026
Astronomers detect the earliest known galaxy cluster gas from just 1.4 billion years after the Big Bang.
Jan 8, 2026
The James Webb Space Telescope has identified massive, short-lived stars that are essentially 'seeds' for the universe's first supermassive black holes.
Jan 7, 2026
These newly-discovered objects look like stars but behave like galaxies.
Jan 7, 2026
Astronomers used the XRISM mission to separate signals and analyze the extreme gravitational forces at work in active galactic nucleus MCG–6-30-15.
Jan 7, 2026