Solving the mystery of 'little red dots' in early universe, scientists discover a new class of black hole stars

When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
PUBLISHED SEP 15, 2025
This artist conception illustrates one of the most primitive supermassive black holes known central black dot at the core of a young, star-rich galaxy (Representative Cover Image Source: NASA/JPL-Caltech)
This artist conception illustrates one of the most primitive supermassive black holes known central black dot at the core of a young, star-rich galaxy (Representative Cover Image Source: NASA/JPL-Caltech)

Astronomers using the James Webb Space Telescope (JWST) have proposed a radical new explanation for mysterious red objects observed in the early universe: they could be an entirely new class of celestial body, what researchers are calling a "black hole star," according to the Pennsylvania State University

Artist’s impression of a black hole star (not to scale) (Image Source: Max Planck Institute for Astronomy | T. Müller | A. de Graaff)
Artist’s impression of a black hole star (not to scale) (Image Source: Max Planck Institute for Astronomy | T. Müller | A. de Graaff)

Initially dubbed “universe breakers,” these tiny red dots were first spotted in 2022 data from the JWST. At the time, scientists theorized they were surprisingly mature, red galaxies from a period just a few hundred million years after the Big Bang. This interpretation would have completely rewritten our understanding of galaxy formation, as the objects appeared too massive to exist so early in cosmic history.

An artist’s impression of a dust-shrouded quasar in the early Universe. (Representative Cover Image Source: NAOJ)
An artist’s impression of a dust-shrouded quasar in the early Universe. (Representative Image Source: NAOJ)

Now, a new study in the journal Astronomy & Astrophysics, co-authored by researchers at Penn State, suggests these objects aren't galaxies at all. Instead, the analysis indicates they are powerful supermassive black holes surrounded by immense, dense clouds of cold gas. While a typical black hole's surroundings are incredibly hot, the light from these "red dots" is dominated by the glow of this cooler gas, mimicking the appearance of a low-mass star. "It’s an elegant answer," said Joel Leja, an astrophysics professor at Penn State and co-author on the paper. "We thought it was a tiny galaxy full of many separate cold stars, but it’s actually, effectively, one gigantic, very cold star."

The findings, based on extensive spectroscopic data collected from thousands of distant galaxies, present a compelling new theory for the origin of the supermassive black holes observed at the heart of most galaxies today. Researchers believe these "black hole stars" could be the earliest stage of their formation, rapidly building mass in the universe’s infancy. The team plans to conduct further studies to test this new hypothesis. As Leja put it, "The universe is much weirder than we can imagine and all we can do is follow its clues." 

A disk of hot gas swirls around a black hole in this illustration (Representative Image Source: NASA Image and Video Library | NASA)
A disk of hot gas swirls around a black hole in this illustration (Representative Image Source: NASA Image and Video Library | NASA)

The recent findings add to a growing body of evidence from the JWST that challenges long-held theories about the universe's early history. In a separate study, a team of astronomers using the telescope has identified 300 unusually bright objects they believe are early galaxies, a discovery that could force scientists to rethink how these cosmic structures first emerged. Published in The Astrophysical Journal and led by researchers from the University of Missouri, the study describes these objects as "candidate galaxies" from a period when the very first stars and galaxies were just beginning to form.

Using data from NASA’s James Webb Space Telescope, University of Missouri researchers identified 300 unusual early galaxy candidates (Image Source: University of Missouri | Bangzheng “Tom” Sun)
Using data from NASA’s James Webb Space Telescope, University of Missouri researchers identified 300 unusual early galaxy candidates (Image Source: University of Missouri | Bangzheng “Tom” Sun)

“If even a few of these objects turn out to be what we think they are, our discovery could challenge current ideas about how galaxies formed in the early universe," said Haojing Yan, a professor of astronomy and a co-author of the study. The team was able to spot these distant objects thanks to the JWST's powerful infrared cameras, which can detect light that has been stretched over billions of years of cosmic expansion. This "redshifted" light acts as a cosmic clock, allowing astronomers to see these galaxies as they appeared in the dawn of time.

More on Starlust

Webb Telescope spots 300 unusually bright 'mysterious objects' that could rewrite galaxy formation history

Astronomers uncover 'cosmic fossil' galaxy offering glimpse into early universe's seven-billion-year history

MORE STORIES

Scientists have spotted a red dwarf star about 130 light-years away ejecting an enormous amount of material into space.
4 days ago
A black hole has a huge mass packed into an infinitely tiny space.
4 days ago
The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
6 days ago
Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
6 days ago
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
Nov 5, 2025
Researchers analyzing JWST observations of LAP1-B determined the distant galaxy exhibits properties consistent with the earliest, hypothesized stars.
Nov 5, 2025
Generated during the initial camera commissioning in June 2025, the discovery stems from the observatory's Virgo First Look images.
Oct 31, 2025
The findings confirm the presence of rare binary systems and suggest certain black holes are second-generation, forged in earlier cosmic collisions.
Oct 29, 2025
New research suggests a massive black hole is the primary force preventing Segue 1's small complement of stars from drifting into the void.
Oct 28, 2025
The rocky exoplanet GJ 251 c, estimated to be nearly four times the mass of Earth, has been classified as a 'super-Earth.'
Oct 24, 2025