Scientist says heliostats could help detect asteroids at night: 'We can help find near-Earth objects'

John Sandusky, a scientist, is leading research into a new method for detecting near-Earth asteroids at night, repurposing heliostats typically used for solar energy.
PUBLISHED 13 HOURS AGO
From the vastness of space, a vibrant blue Earth can be seen, often sharing its cosmic neighborhood with asteroids (Representative Cover Image Source: Getty | mikdam)
From the vastness of space, a vibrant blue Earth can be seen, often sharing its cosmic neighborhood with asteroids (Representative Cover Image Source: Getty | mikdam)

A novel concept emerging from Sandia National Laboratories suggests a new role for solar energy infrastructure in planetary defence. Scientist John Sandusky is spearheading research into utilizing heliostats, typically employed to harness sunlight for power, to identify near-Earth asteroids under the cover of darkness. This innovative method could significantly enhance efforts to detect celestial objects that pose potential impact threats, offering a cost-effective alternative to traditional astronomical observatories, as per Sandia LabNews.

Illustration of asteroids approaching Earth (Representative Image Source: Getty | VICTOR HABBICK VISIONS/SCIENCE PHOTO LIBRARY)
Illustration of asteroids approaching Earth (Representative Image Source: Getty | VICTOR HABBICK VISIONS/SCIENCE PHOTO LIBRARY)

Sandusky's proposition leverages the existing, idle capacity of heliostat fields during nighttime hours. "The heliostat fields don’t have a night job," Sandusky stated. "The nation has an opportunity to give them a night job at a relatively low cost for finding near-Earth objects," and “If we knew ahead of time that an asteroid was coming and where it might hit, we’d have a better chance to prepare and reduce the potential damage.”

As part of a Laboratory Directed Research and Development initiative, Sandusky conducted nocturnal experiments at the National Solar Thermal Test Facility. He successfully demonstrated the feasibility of using a single heliostat from the facility's 212-mirror array for astronomical observation. Instead of collecting the immense power of sunlight, the experiment focused on detecting the minuscule light reflected off asteroids. “Solar towers collect a million watts of sunlight,” Sandusky explained. “At night, we want to collect a femtowatt, which is a millionth of a billionth of a watt of power of sunlight that’s scattered off of asteroids.”

Molten salt tower concentrating solar thermal power plant, countless neat solar mirrors, sustainable energy, sustainable development, carbon neutrality concept (Representative Image Source: Getty | Jinli Guo)
Molten salt tower concentrating solar thermal power plant, countless neat solar mirrors, sustainable energy, sustainable development, carbon neutrality concept (Representative Image Source: Getty | Jinli Guo)

The core of his approach is to measure an asteroid's speed relative to background stars, deviating from conventional imaging techniques. Crucially, the experiment required no modification to the existing heliostat hardware. Sandusky utilized standard software to subtly oscillate the heliostat's orientation, sweeping its gaze across the night sky approximately once per minute. From atop the 200-foot solar tower, he employed standard optical instruments to detect the faint, concentrated starlight. “You spend a lot of time waiting. There were about 20 minutes between the collection of data points. I would collect data until dawn,” Sandusky confirmed. “We did not set out to find asteroids. We demonstrated the heliostat can be swept back and forth and that it can see stars.”

Field of asteroids with space background and a glowing, orange, shiny star (Representative Image Source: Getty | Maciej Frolow)
Field of asteroids with space background and a glowing, orange, shiny star (Representative Image Source: Getty | Maciej Frolow)

This early-stage technology presents several compelling advantages beyond its cost-effectiveness. Sandusky highlighted its potential utility for the US Space Force, particularly in tracking spacecraft within the challenging cislunar region near the Moon. Sandusky has presented his initial findings and published a paper at a conference for the International Society for Optics and Photonics, actively seeking feedback from the optics and asteroid detection communities. “Getting peer feedback provides an opportunity to understand what the concerns are about how this technology will work,” he noted. The next phase of research may involve using heliostats to track known planets, which would aid in understanding the technology's inherent limitations. The ultimate goal is to scale up operations from a single heliostat to an entire field, significantly enhancing the capability to detect a broader range of near-Earth objects, including smaller asteroids. 

The specter of an asteroid impact often fueled global anxiety, with past reports, such as an initial 2023 projection by NASA, raising concerns about potential catastrophic damage. While such immediate threats are frequently re-evaluated and often downgraded to negligible probabilities, as seen with the 2023 asteroid's impact chances dropping to a mere 0.0017%, the devastating repercussions of a significant strike, from widespread destruction to the potential for widespread loss of life and massive energy release, underscore the critical need for advanced detection capabilities. Sandusky's work could play a pivotal role in providing earlier warnings and more comprehensive monitoring of these celestial wanderers

MORE STORIES

The new Hubble image showcases NGC 1309's distinct elements, from its vivid blue star-forming areas and dark dust lanes to its glowing galactic core.
13 hours ago
On February 28, 2025, the Clipper captured this image of Mars's heat signature while performing a crucial gravity-assist maneuver.
1 day ago
The JWST's powerful infrared capabilities allowed astronomers from MIT, Columbia University, and other institutions to see through thick cosmic dust, uncovering dramatic events long concealed.
4 days ago
During its testing period, the observatory's Simonyi Survey Telescope and Legacy Survey of Space and Time (LSST) camera were coincidentally pointed at the precise celestial coordinates of 3I/ATLAS.
5 days ago
Spectral data from JWST, analyzed by Dr. Ujjwal Raut and his team at SwRI, shows Europa's surface ice crystallizes at varying rates.
6 days ago
This new find brings the total to four known sednoids, a mysterious group of icy bodies with elongated orbits.
Jul 21, 2025
TOI 1227 b, a newly designated exoplanet, is a youthful 8 million years old—a thousand times younger than our Sun.
Jul 18, 2025
Scientists will create a time-lapse cosmic movie by repeatedly conducting the two-year High-Latitude Time-Domain Survey.
Jul 17, 2025
Named for its unique shape, the 'Infinity Galaxy' is a cosmic smash-up that appears to be the first-ever observed 'direct collapse' black hole.
Jul 16, 2025
More than a hundred individual galaxies sparkle in the new Hubble image, yet the cluster's intricate nature extends far beyond the realm of visible light.
Jul 14, 2025