Astronauts
Astronomy
Constellation
Deep Sky Objects
Moon
Stargazing
Telescope
About Us Contact Us Privacy Policy Accuracy & Corrections Terms & Condition
COPYRIGHT. All contents of on the site comporting the Starlust branding are Copyright 2019. All rights reserved.
STARLUST.ORG / DEEP SKY OBJECTS

NASA's James Webb unveils the mystery of the Milky Way's most common planets

Sub-Neptunes are the most common exoplanets observed in our galaxy, and James Webb telescope helps study exoplanet TOI-421 b.
PUBLISHED MAY 8, 2025
An Earth-like exoplanet with a star, an alien blue planet in space. (Representative Cover Photo by Nazarii Neshcherenskyi / Getty Images)
An Earth-like exoplanet with a star, an alien blue planet in space. (Representative Cover Photo by Nazarii Neshcherenskyi / Getty Images)

Astronomers have found the secrets behind the mysterious sub-Neptunes, the most common kind of exoplanet in our galaxy. They don’t revolve around the sun but are gassy planets with hazy shrouds, according to NASA. Scientists are now studying the exoplanet TOI-421 b with the observations from NASA’s James Webb Space Telescope. It was first discovered by NASA's Kepler space telescope, but the atmospheres of sub-Neptunes were deemed impossible to probe. This study can help understand the existence, formation, and evolution of sub-Neptunes in space.

Illustration of an extrasolar planet, a planet orbiting a star other than the Sun that is somewhat like the Earth. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Illustration of an extrasolar planet, a planet orbiting a star other than the Sun that is somewhat like the Earth. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)

“I had been waiting my entire career for Webb so that we could meaningfully characterize the atmospheres of these smaller planets,” stated principal investigator Eliza Kempton of the University of Maryland, College Park, to Newsweek. “By studying their atmospheres, we’re getting a better understanding of how sub-Neptunes formed and evolved, and part of that is understanding why they don't exist in our solar system,” they added. TOI-421 b is around 245 light-years away in the Lepus constellation to the south of Orion, and has a temperature of 1,340 degrees Fahrenheit.



 

Sub-Neptunes are larger than Earth, but smaller than gas planets such as Jupiter, as per NASA. It was observed prior to Webb that sub-Neptune atmospheres had flat or featureless transmission spectra. This meant that the chemical fingerprints of its spectral features were invisible or undetectable, which indicated cloud obscuration. “Why did we observe this planet, TOI-421 b? It's because we thought that maybe it wouldn't have hazes,” said Kempton, as per Newsweek. This was attested by previous data of varied temperatures showing varied clouds.

Engineers and technicians assemble the James Webb Space Telescope on November 2, 2016, at NASA's Goddard Space Flight Center. (Representative Photo by Alex Wong / Getty Images)
Engineers and technicians assemble the James Webb Space Telescope on November 2, 2016, at NASA's Goddard Space Flight Center. (Representative Photo by Alex Wong / Getty Images)

Beneath a certain range of temperature, photochemical reactions are believed to occur between sunlight and methane gas that creates the haze. This mark is at about 1,070 degrees Fahrenheit, way below the temperature of TOI-421 b. Hotter planets are not supposed to have methane and so the haze would not be triggered. Brian Davenport, a third-year Ph.D. student from the University of Maryland, executed the primary data analysis. "We saw spectral features that we attribute to various gases, and that allowed us to determine the composition of the atmosphere," he said.

3D rendering of the planet Neptune in space with the sunlight casting light on its blue surface as it appears from behind the planet. (Representative Photo by suman bhaumik / Getty Images)
3D rendering of the planet Neptune in space with the sunlight casting light on its blue surface as it appears from behind the planet. (Representative Photo by suman bhaumik / Getty Images)

The atmosphere had water vapors and tentative signatures of carbon monoxide and sulfur dioxide. Methane and carbon dioxide molecules were not detected, as per NASA. There was also a huge amount of hydrogen in the exoplanet’s atmosphere. This light atmosphere was different from the previous heavy-molecule sub-Neptunes, which indicated that TOI-421 b formed and evolved differently. Brian Davenport and Eliza Kempton published the findings of their study and the sub-Neptunes observations of the James Webb in The Astrophysical Journal Letters.



 

“We've unlocked a new way to look at these sub-Neptunes,” said Davenport. “These high-temperature planets are amenable to characterization. So by looking at sub-Neptunes of this temperature, we're perhaps more likely to accelerate our ability to learn about these planets,” he added, as per Universe Today. TOI-421b orbits a sun-like star, contrary to many other sub-Neptunes that orbit smaller red dwarf stars. 

MORE ON Starlust
On May 3, 2024, the Chang'e-6 probe launched and successfully gathered 1,935.3 grams of samples from the Moon's South Pole-Aitken (SPA) Basin.
1 day ago
The groundbreaking discovery involves fluvial sinuous ridges, or inverted channels, found mainly in Noachis Terra, a less-studied part of Mars' southern highlands.
1 day ago
Renowned for their swift, bright meteors and luminous trails, the Perseids are considered one of the most anticipated celestial events.
1 day ago
On July 20, the crescent moon will approach within a degree of the Pleiades star cluster, also known as the Seven Sisters, creating a stunning visual.
3 days ago
The pioneering project is set to transform our understanding of the Sun's mysterious interior.
4 days ago
Some theories suggest that our sun was in a similar state before the planets were all formed.
Jul 6, 2025
Discovered on July 1, the celestial body 3I/ATLAS is currently approaching Earth from the direction of the constellation Sagittarius.
Jul 6, 2025
Historically revered as Zeus's powerful eagle, bearing lightning and messages, this celestial constellation reaches its highest point in the sky during July and August.
Jul 6, 2025
With its unparalleled infrared capabilities, Webb now accomplishes what was once impossible, transforming our view of the cosmos from distant galaxies to our solar system.
Jul 5, 2025
An autonomous docking for the Progress 92 is anticipated around 5:27 p.m. EDT on Saturday, July 5.
Jul 4, 2025
This lift-off, from Kennedy Space Center's historic Launch Complex 39A (LC-39A), marked yet another crucial orbital mission for SpaceX.
Jul 2, 2025
The advanced LOFAR radio telescope enabled scientists to detect a massive cloud of high-energy particles around a galaxy cluster whose light traveled 10 billion years to Earth.
Jul 1, 2025
The new image specifically highlights the eastern reaches of Arcadia Planitia, a crucial area northwest of the massive Tharsis volcanic province.
Jun 30, 2025
The spiral galaxy UGC 11397, in the constellation Lyra, is home to a supermassive black hole aggressively consuming material at its core.
Jun 30, 2025
The New Shepard program's 33rd overall flight, a suborbital journey lasting approximately 10 minutes, lifted off from Launch Site One in West Texas at 9:39 a.m. CDT.
Jun 30, 2025
The dwarf galaxy NGC 4449, just 12.5 million light-years away in the constellation Canes Venatici, is a standout 'starburst galaxy.'
Jun 29, 2025
The new image combines data from across the electromagnetic spectrum, giving astronomers a complete picture of Andromeda's complex structure.
Jun 27, 2025
The NASA/ESA Hubble Space Telescope recently captured an image of the spiral galaxy IC 758, located 60 million light-years away in the constellation Ursa Major.
Jun 22, 2025
The Nancy Grace Roman Space Telescope, launching in 2027, will use gravitational lensing, a phenomenon Einstein predicted over a century ago, to study the mystery of dark matter.
Jun 22, 2025
Essential for galactic evolution, mergers impact the layout of gas, the motion of stars, and a galaxy's overall structure, ultimately leading to greater stellar mass.
Jun 21, 2025