NASA telescope spots roaming giant black hole that's eating stars: 'Space Jaws'

The massive black hole is 600 million light-years away.
PUBLISHED MAY 12, 2025
Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Cover Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Cover Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)

NASA's Hubble Space Telescope has been able to pinpoint a black hole dubbed "Space Jaws" in a burst of light. The black hole with the same mass as around 1 million suns was found when it tore apart and swallowed a star, as per NASA. This new phenomenon is known as a tidal disruption event (TDE) that spreads a burst of radiation. It was dubbed "AT2024tvd," and astronomers were able to pinpoint the black hole using the Hubble Telescope. These observations were backed up by NASA’s Chandra X-Ray Observatory and the National Radio Astronomy Observatory's (NRAO) Very Large Array telescope.

The Hubble Space Telescope is against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer on March 3, 2002 (Representative Photo by NASA/Getty Images)
The Hubble Space Telescope is against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer on March 3, 2002 (Representative Photo by NASA/Getty Images)

The data showed that the black hole was offset from the galaxy's center and revealed details of black hole physics. This was the first time an offset TDE was identified from around 100 TDE events recorded by optical sky surveys. This TDE was only 2,600 light-years away from the black hole at the galaxy’s center, according to Hubble’s optical precision. AT2024tvd's host galaxy has a second, larger black hole in the galactic core, both of which co-exist but are not bound by gravity. The smaller black hole might have merged into the bigger one at the galaxy’s center.

This is the first image of Sgr A*, the supermassive black hole at the centre of our galaxy, with an added black background to fit wider screens. (Representative Photo by NASA Via Getty Images)
This is the first image of Sgr A*, the supermassive black hole at the centre of our galaxy, with an added black background to fit wider screens. (Representative Photo by NASA Via Getty Images)

"Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them," stated astronomer Professor Ryan Chornock of the University of California, Berkeley, as per Newsweek. “It opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys," added UC Berkeley astrophysicist Yuhan Yao, who led the study on the discovery. The paper is being prepared for publication in the latest issue of The Astrophysical Journal Letters.

3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Photo by Cavan Images / Luca Pierro / Getty Images)
3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Photo by Cavan Images / Luca Pierro / Getty Images)

When stars get stretched or “spaghettified” by the gravitational tidal forces of a black hole, the remnants are pulled into its orbit. This pushes out shocks and outflows with high temperatures, visible in ultraviolet and visible light, as per NASA. The flare from the black hole resembled a supernova but was very hot and had broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The flare was first observed by the Zwicky Transient Facility at Caltech’s Palomar Observatory, before it was pinpointed and recorded by NASA’s Hubble Space Telescope.

Astronaut Richard M. Linnehan works to replace the starboard solar array on the Hubble Space Telescope (HST) during an extravehicular activity (EVA) (Representative Photo by NASA/Getty Images)
Astronaut Richard M. Linnehan works to replace the starboard solar array on the Hubble Space Telescope (HST) during an extravehicular activity (EVA) (Representative Photo by NASA/Getty Images)

The question of how a smaller black hole traveled farther from the center was hypothesized by astronomers. Previous research had indicated that black holes were ejected from the centers of galaxies due to three-body interactions. The black hole with the lowest mass was kicked out in this event, resulting in its current proximity to the center. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,” Yao explained about the black hole activity that was offset.

Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)

An alternative theory was that the black hole was a remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. This could lead to an eventual spiraling into the central active black hole, way ahead in the future. However, Erica Hammerstein, a UC Berkeley postdoctoral researcher, scoured the Hubble images and did not find evidence of a past galaxy merger in Hubble's images of the galaxy. However, she added that there was substantial evidence previously that showed galaxy mergers highlight the rates of enhanced tidal disruption event rates.

MORE STORIES

James Webb Space Telescope captures MoM-z14, a galaxy from just 280 million years after the Big Bang.
3 days ago
Studying the dark energy in the universe requires the mapping of thousands of galaxies and detecting various patterns of the cosmos.
5 days ago
JWST reveals EC 53 protostar forges silicates in a hot disk and sends them out through "cosmic highways."
5 days ago
The Subaru Telescope discovered a unique quasar that was shining bright in two kinds of waves despite its continuous growth.
Jan 23, 2026
HH 80/81, as captured by the Hubble telescope in the latest image, are the brightest Herbig-Haro (HH) objects known to exist.
Jan 20, 2026
This newly discovered explosion from the dawn of time is helping scientists map the chemical evolution of the first galaxies.
Jan 16, 2026
The galaxy in question dates back to about 3 billion years after the Big Bang.
Jan 13, 2026
'We're still trying to figure out why black holes are suddenly more common in galaxies like our own,' said one of the scientists.
Jan 12, 2026