NASA telescope spots roaming giant black hole that's eating stars: 'Space Jaws'

The massive black hole is 600 million light-years away.
PUBLISHED MAY 12, 2025
Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Cover Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Cover Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)

NASA's Hubble Space Telescope has been able to pinpoint a black hole dubbed "Space Jaws" in a burst of light. The black hole with the same mass as around 1 million suns was found when it tore apart and swallowed a star, as per NASA. This new phenomenon is known as a tidal disruption event (TDE) that spreads a burst of radiation. It was dubbed "AT2024tvd," and astronomers were able to pinpoint the black hole using the Hubble Telescope. These observations were backed up by NASA’s Chandra X-Ray Observatory and the National Radio Astronomy Observatory's (NRAO) Very Large Array telescope.

The Hubble Space Telescope is against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer on March 3, 2002 (Representative Photo by NASA/Getty Images)
The Hubble Space Telescope is against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer on March 3, 2002 (Representative Photo by NASA/Getty Images)

The data showed that the black hole was offset from the galaxy's center and revealed details of black hole physics. This was the first time an offset TDE was identified from around 100 TDE events recorded by optical sky surveys. This TDE was only 2,600 light-years away from the black hole at the galaxy’s center, according to Hubble’s optical precision. AT2024tvd's host galaxy has a second, larger black hole in the galactic core, both of which co-exist but are not bound by gravity. The smaller black hole might have merged into the bigger one at the galaxy’s center.

This is the first image of Sgr A*, the supermassive black hole at the centre of our galaxy, with an added black background to fit wider screens. (Representative Photo by NASA Via Getty Images)
This is the first image of Sgr A*, the supermassive black hole at the centre of our galaxy, with an added black background to fit wider screens. (Representative Photo by NASA Via Getty Images)

"Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them," stated astronomer Professor Ryan Chornock of the University of California, Berkeley, as per Newsweek. “It opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys," added UC Berkeley astrophysicist Yuhan Yao, who led the study on the discovery. The paper is being prepared for publication in the latest issue of The Astrophysical Journal Letters.

3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Photo by Cavan Images / Luca Pierro / Getty Images)
3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Photo by Cavan Images / Luca Pierro / Getty Images)

When stars get stretched or “spaghettified” by the gravitational tidal forces of a black hole, the remnants are pulled into its orbit. This pushes out shocks and outflows with high temperatures, visible in ultraviolet and visible light, as per NASA. The flare from the black hole resembled a supernova but was very hot and had broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The flare was first observed by the Zwicky Transient Facility at Caltech’s Palomar Observatory, before it was pinpointed and recorded by NASA’s Hubble Space Telescope.

Astronaut Richard M. Linnehan works to replace the starboard solar array on the Hubble Space Telescope (HST) during an extravehicular activity (EVA) (Representative Photo by NASA/Getty Images)
Astronaut Richard M. Linnehan works to replace the starboard solar array on the Hubble Space Telescope (HST) during an extravehicular activity (EVA) (Representative Photo by NASA/Getty Images)

The question of how a smaller black hole traveled farther from the center was hypothesized by astronomers. Previous research had indicated that black holes were ejected from the centers of galaxies due to three-body interactions. The black hole with the lowest mass was kicked out in this event, resulting in its current proximity to the center. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,” Yao explained about the black hole activity that was offset.

Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)

An alternative theory was that the black hole was a remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. This could lead to an eventual spiraling into the central active black hole, way ahead in the future. However, Erica Hammerstein, a UC Berkeley postdoctoral researcher, scoured the Hubble images and did not find evidence of a past galaxy merger in Hubble's images of the galaxy. However, she added that there was substantial evidence previously that showed galaxy mergers highlight the rates of enhanced tidal disruption event rates.

MORE STORIES

The data suggest this small, super-hot world is shrouded in a thick layer of gas, likely hovering above a planet-wide ocean of magma.
2 hours ago
The region around black holes was not thought to be conducive to star formation, yet research proved otherwise.
19 hours ago
The discovery, validated by a separate European team led by the University of Exeter, may offer fresh insight into interactions between planets and binary star systems.
1 day ago
During its 1986 observation of the planet in the first and only flyby, the spacecraft measured a surprisingly strong electron radiation belt.
2 days ago
Previously, the most ancient supernova ever confirmed dated back to when the universe was 1.8 billion years old.
2 days ago
NASA's Fermi telescope was the first to identify the highly unusual cosmic explosion.
3 days ago
An international team of astronomers conducted a ten-day observation of the NGC 3783 black hole using mainly the XRISM space telescope.
3 days ago
A nova is a massive, temporary star explosion caused when a dense white dwarf star pulls material from a nearby star, setting off an uncontrolled nuclear reaction.
5 days ago
A team of computational astrophysicists has developed a simulation that explains the behavior of matter around black holes.
7 days ago
A study has also concluded that the interior of 3I/ATLAS is rich in metal, which could challenge our current understanding of comet formation.
7 days ago