NASA data helps scientists discover possible source of gold in space

The scienctists used NASA clues to form a link between Magnetar bursts and gold's cosmic origins.
PUBLISHED MAY 8, 2025
(L) The NASA Logo sign at Kennedy Space Center Visitor Complex on August 11, 2023, in Florida. (R) A row of gold ingots in Russia.  (Representative Cover Image Source: Getty| (L) Photo by Dominik Bindl (R) Andrey Rudakov)
(L) The NASA Logo sign at Kennedy Space Center Visitor Complex on August 11, 2023, in Florida. (R) A row of gold ingots in Russia. (Representative Cover Image Source: Getty| (L) Photo by Dominik Bindl (R) Andrey Rudakov)

For decades, scientists have made long-term efforts to solve the mystery of how elements heavier than iron, including gold and platinum, were first created and scattered through the universe. But new data from NASA has now given us significant insights into the cosmos origins of gold that we never knew, as revealed by CNN

MERRITT ISLAND, FLORIDA - AUGUST 11: The NASA Logo sign at Kennedy Space Center Visitor Complex on a sunny day on August 11, 2023 in Merritt Island, Florida. (Photo by Dominik Bindl/Getty Images)
MERRITT ISLAND, FLORIDA - AUGUST 11: The NASA Logo sign at Kennedy Space Center Visitor Complex on a sunny day on August 11, 2023 in Merritt Island, Florida. (Photo by Dominik Bindl/Getty Images)

New research based on the signal detected and analysed by NASA points towards a clue: "Magnetars" or highly magnetized neutron stars. Scientists believe that lighter elements like helium, hydrogen, and even lithium existed soon after the Big Bang created the universe 13.8 billion years ago. And when massive stars exploded, the heat and pressure formed heavier elements like iron. In its scattered form, iron got mixed into interstellar gas clouds, which form planets and stars. Astrophysicists, however, have questioned how there has been a widespread distribution of gold despite it being heavier than iron throughout the universe.  A man cleans a gold bar after smelting it from recycled gold jewellery on April 17, 2025 in Istanbul, Turkey.  (Photo by Chris McGrath/Getty Images)

A man cleans a gold bar after smelting it from recycled gold jewellery on April 17, 2025 in Istanbul, Turkey. (Representative Image Source: Getty Images | Photo by Chris McGrath)

Astrophysicist Eric Burns, an assistant professor and astrophysicist at Louisiana State University in Baton Rouge, stated, "It's answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten," as per Science Alert. On the other hand, Anirudh Patel, lead author of the study published Tuesday in The Astrophysical Journal Letters and a doctoral student of physics at Columbia University in New York City, in a statement, said, “It’s a fun puzzle that hasn’t actually been solved,” according to CNN.

Back in 2017, a collision between two neutron stars was observed by astronomers, and gravitational waves were created by this cataclysmic clash. This collision event, known as a "Kilonova," created heavy elements like gold, platinum, and lead. According to study co-author Eric Burns, it is thought that the majority of the neutron star mergers happened in the last few billion years. However, Burns explained that data collected two decades ago from NASA and European Space Agency telescopes previously thought to be unsolvable indicate that energetic outbursts from magnetars formed in the universe's early years might have contributed to gold's creation.

A miner handles a piece of raw platinum ore in South Africa. (Photographer: Waldo Swiegers/Bloomberg)
A miner handles a piece of raw platinum ore in South Africa. (Representative Image Source: Getty Images | Photo by Waldo Swiegers/Bloomberg)

Intrigued by the potential link between magnetars and heavy element formation, the research team initially looked for evidence in visible and even ultraviolet light. Nonetheless, Burns also looked into whether these flares produced detectable gamma rays. During the analysis, he examined the gamma-ray data from a large magnetar flare in December 2004, recorded by the now-defunct INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission, as reported by CNN. Though astronomers had recognized the signal, its relevance remained cryptic.

Close-up of graphite ore. Photographer: Christinne Muschi/Bloomberg
Close-up of graphite ore. (Representative Image Source: Getty Images | Photo by Christinne Muschi/Bloomberg)

Interestingly, the team’s 2004 data matched almost flawlessly with Metzger’s model: a gamma-ray signature produced from the development and subsequent expulsion of heavy elements would look like a magnetar flare. Data collected from NASA's decommissioned Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Wind satellite also corroborated the team's findings. Burns remarked that this substantial contribution came from decades of sustained federally funded research.

A breathtaking image of a spiral galaxy in the depths of space, featuring a bright, white core surrounded by a swirling expanse of blue and purple hues. (Representative Photo by adventtr/ Getty Images)
A breathtaking image of a spiral galaxy in the depths of space, featuring a bright, white core surrounded by a swirling expanse of blue and purple hues. (Representative Photo by adventtr/ Getty Images)

Patel recalled the group’s thrill, mentioning that they did not know the corresponding signal was present in the 2004 datasets when building their model in December 2024. He said, “It's very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion (over) the course of our galaxy’s history.” In addition to that, Patel shared some light on NASA's Compton Spectrometer and Imager mission, or COSI, set to launch in 2027, which might build on the study's results. This wide-field gamma-ray telescope aims to watch giant magnetar flares and spot elements they create. The telescope could assist astronomers in looking for other possible sources of heavy elements throughout the universe, as per CNN.

MORE STORIES

By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
2 hours ago
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
2 hours ago
While astronomers were observing Quaoar on June 25, 2025, a solid object unexpectedly blocked out the starlight for 1.23 seconds.
1 day ago
A groundbreaking study has not only solved the longstanding mystery of how ancient stellar systems form but has also revealed an entirely new class of object in the Milky Way.
1 day ago
The greedy white dwarf star in question is the V Sagittae, which is a highly luminous binary star and is found eating its larger twin.
3 days ago
This dwarf planet is the second trans-Neptunian object with a confirmed presence of gas.
4 days ago
A peculiar object is helping astronomers explain why a common element remained undetected in the Jupiter and Saturn atmospheres.
4 days ago
The findings would help astronomers learn more about the formation and evolution of dwarf galaxies, particularly the ones that have been isolated from their original groups.
5 days ago
Astronomers have found a newly identified system, unofficially named 'JWST's Quintet,' where at least five galaxies and 17 star-forming clumps are merging.
7 days ago
The satellite found two rocky exoplanets comparable to Earth in size, orbiting a nearby K-type star, as candidates for its mission.
Sep 6, 2025