NASA's Roman Telescope to probe dark matter using Einstein's gravitational lensing

The Nancy Grace Roman Space Telescope, launching in 2027, will use gravitational lensing, a phenomenon Einstein predicted over a century ago, to study the mystery of dark matter.
PUBLISHED JUN 22, 2025
The late Dr. Nancy Grace Roman, the namesake of NASA’s next flagship astrophysics mission, which is on track to launch by May 2027. (Cover Image Source: X | Photo by Nancy Grace Roman Space Telescope)
The late Dr. Nancy Grace Roman, the namesake of NASA’s next flagship astrophysics mission, which is on track to launch by May 2027. (Cover Image Source: X | Photo by Nancy Grace Roman Space Telescope)

NASA's Nancy Grace Roman Space Telescope, set to begin operations in 2027, will employ a phenomenon called "gravitational lensing," predicted by Albert Einstein over a century ago, to investigate the enduring mystery of dark matter. A key part of Einstein's theory of general relativity, the term describes how massive objects warp the fabric of time and space, causing light from distant sources to bend as it passes these cosmic distortions, as reported by Space.com. 



 

A recent study indicates that the Roman Telescope's extensive cosmic surveys could hold approximately 160,000 gravitational lenses. Researchers estimate that about 500 of these lenses will offer prime opportunities to study "dark matter" — the enigmatic substance believed to constitute a significant portion of the universe's mass. "Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?" posited Tansu Daylan, principal investigator for the research team and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. "While some properties of dark matter are known, we essentially have no idea what makes up dark matter." Daylan emphasized that the Roman Telescope will be crucial in distinguishing "how dark matter is distributed on small scales and, hence, its particle nature."



 

The elusive nature of dark matter poses a significant challenge for scientists. Despite comprising approximately 85% of the universe's matter, its composition remains largely unknown. This enigma stems from dark matter's inability to interact with light or other forms of electromagnetic radiation. Consequently, dark matter is not only invisible but also cannot be made of familiar particles such as electrons, protons, and neutrons, which form the atoms of all observable matter, including stars, planets, and moons. 

This lack of interaction with electromagnetic radiation, one of the universe's four fundamental forces, has driven scientists to look beyond the Standard Model of particle physics in their quest for new particles that could explain dark matter. So, how can dark matter bend if it doesn't interact with it? The answer lies with gravity, another of the universe's fundamental forces. General relativity dictates that all objects with mass, including dark matter, warp the space-time relation to some degree. Light is then compelled to follow this curvature. This is precisely how dark matter factors intp gravitational lensing. 



 

Each image generated by Roman will be approximately 200 times larger than those from the Hubble Space Telescope, a key factor in its ability to uncover a vast number of new gravitational lenses. However, the telescope's contribution goes beyond mere quantity; the new study highlights the quality of these Roman-discovered lenses as well. "Roman will not only significantly increase our sample size [of gravitational lenses] — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky," Daylan explained to the outlet

 the Hubble Space Telescope is backdropped against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer March 3, 2002 (Image Source: Getty | NASA)
The Hubble Space Telescope is positioned against black space as the Space Shuttle Columbia, with a crew of seven astronauts on board, eases closer on March 3, 2002. (Image Source: Getty Images | Photo by NASA)

He added that both the alignment and brightness of background galaxies must meet specific criteria "so we can characterize the dark matter within the foreground galaxies." Roman's Wide Field instrument, a 300-megapixel camera, will enable researchers to measure the bending of light from background galaxies with incredible precision. This sensitivity is so high that it's comparable to gauging the diameter of a single human cell from over two American soccer pitches away. 

MORE STORIES

Comet 3I/ATLAS might have stolen all the headlines, but it's far from the only comet that has been discovered this year.
1 day ago
The discovery throws light on how giant or dying stars behave with their surroundings and other objects around them. 
5 days ago
Scientists have spotted a red dwarf star about 130 light-years away ejecting an enormous amount of material into space.
Nov 13, 2025
A black hole has a huge mass packed into an infinitely tiny space.
Nov 13, 2025
The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
Nov 11, 2025
Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
Nov 11, 2025
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
Nov 5, 2025
Researchers analyzing JWST observations of LAP1-B determined the distant galaxy exhibits properties consistent with the earliest, hypothesized stars.
Nov 5, 2025
Generated during the initial camera commissioning in June 2025, the discovery stems from the observatory's Virgo First Look images.
Oct 31, 2025
The findings confirm the presence of rare binary systems and suggest certain black holes are second-generation, forged in earlier cosmic collisions.
Oct 29, 2025