NASA's Perseverance Mars Rover strikes gold, discovers a trove of ancient rocks on Jezero Crater

The Jezero Crater offered a wide variety of rocks and outcrops to study and sample, which provided a glimpse into the planet’s history.
PUBLISHED MAY 25, 2025
Artwork of NASA's Mars 2020 mission. The mission consists of a rover called Perseverance and a smaller rotorcraft called Ingenuity. (Representative Cover Image Source: Getty Images | Photo by Mark Garlick/Science Photo Library)
Artwork of NASA's Mars 2020 mission. The mission consists of a rover called Perseverance and a smaller rotorcraft called Ingenuity. (Representative Cover Image Source: Getty Images | Photo by Mark Garlick/Science Photo Library)

NASA’s Perseverance rover has overwhelmed scientists with the unique collection of Martian rocks on the rim of Jezero Crater. Scientists will be able to discern the planet’s history, evolution, and potential to sustain life by studying these rocks, boulders, and outcrops, as per the NASA Jet Propulsion Laboratory (JPL). The rover was able to secure five rocks and seal three of them in sample tubes, along with a close analysis of seven rocks. It also analysed 83 rocks from afar with a laser. This success was the mission’s fastest science-collection tempo since the rover landed on Mars.

Angular and smooth surface of rocks are seen in an image taken by the panoramic camera on the Mars Exploration Rover Spirit on January 6, 2003. (Representative Photo by NASA/Jet Propulsion Laboratory/ Cornell University via Getty Images)
Angular and smooth surface of rocks are seen in an image taken by the panoramic camera on the Mars Exploration Rover Spirit on January 6, 2003. (Representative Image Source: Getty Images | Photo by NASA/Jet Propulsion Laboratory/ Cornell University)

Perseverance was exploring a roughly 445-foot-tall slope called “Witch Hazel Hill,” with a staggering diversity of rocks. “During previous science campaigns in Jezero, it could take several months to find a rock that was significantly different from the last rock we sampled and scientifically unique enough for sampling,” stated Perseverance’s project scientist, Katie Stack Morgan of NASA’s Jet Propulsion Laboratory. “But up here on the crater rim, there are new and intriguing rocks everywhere the rover turns. It has been all we had hoped for and more,” she added.

A mobility prototype for the NASA Mars Sample Return mission is demonstrated in the Mars Yard at Jet Propulsion Laboratory (JPL) on April 11, 2023, in Pasadena, California. (Representative Photo by Mario Tama/Getty Images)
A mobility prototype for the NASA Mars Sample Return mission is demonstrated in the Mars Yard at Jet Propulsion Laboratory (JPL) on April 11, 2023, in Pasadena, California. (Representative Image Source: Getty Images | Photo by Mario Tama)

This area could provide evidence of a time on Mars that had a different climate from what the scientists knew. The crater’s western rim contained several rock fragments that were once molten and had erupted from deep beneath the surface, per Space.com. It was likely from meteor impacts that happened billions of years ago, possibly including the hit that created Jezero Crater. Silver Mountain, Perseverance’s first crater rim sample, was dated back to the Noachian age, a period that witnessed the heavy bombardment that shaped the planet’s cratered landscape.

Sample scoop and arm, Viking 1 Mission to Mars, 1976. (Representative Photo by Heritage Space/Heritage Images/Getty Images)
Sample scoop and arm, Viking 1 Mission to Mars, 1976. (Representative Image Source: Getty Images | Photo by Heritage Space/Heritage Images)

The underground boulders were in stark contrast to the well-preserved layered rocks at the crater’s rim. Some boulders also showed signs of having been modified by activities of water, such as a rock rich in serpentine minerals. This mineral forms when water interacts with certain volcanic rocks and creates hydrogen, a potential energy source for life. “We’ll use all the rover data gathered recently to decide if and where to collect the next sample from the crater rim,” Morgan added as the science team experienced four months of “whirlwind” in the Mars chapter.

Still image of NASA’s Perseverance rover as it touched down in the area known as Jezero crater on February 18, 2021, on the planet Mars. (Photo by NASA via Getty Images)
Still image of NASA’s Perseverance rover as it touched down in the area known as Jezero crater on February 18, 2021, on the planet Mars. (Representative Image Source: Getty Images | Photo by NASA)

The rover also came across an outcrop containing igneous minerals that were crystallized from magma deep in the Martian crust. However, the rock had a crumbly texture, so the rover gave up after two attempts at coring, which involved sampling the core of the rock. After this, it headed towards another section of rocks called the “Tablelands,” according to Sci Tech Daily. It was here that the serpentine rocks, formed in a process called serpentinization, were found. During this, the original structure and mineralogy of the rock shifted to expand and develop fractures.

Artwork of NASA's Mars 2020 mission. The mission consists of a rover called Perseverance and a smaller rotorcraft, Ingenuity. (Representative Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Artwork of NASA's Mars 2020 mission. The mission consists of a rover called Perseverance and a smaller rotorcraft, Ingenuity. (Representative Image Source: Getty Images | Photo by Mark Garlick/Science Photo Library)

The rover also sealed samples from a rock called “Main River,” which had alternating bright and dark bands. After the Main River sample, the rover surveyed Witch Hazel Hill, studying three more rocky outcrops: “Sally’s Cove,” “Dennis Pond,” and “Mount Pearl.” With much left to explore, the team was on top of their game, analyzing engineering alongside their sample research. However, it was not the end of the road, as many discoveries awaited Perseverance on the Martian surface. The rover continues operating successfully on the planet, identifying and collecting relevant sample data.

MORE STORIES

These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
1 day ago
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
1 day ago
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
Sep 26, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
Sep 19, 2025
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
Sep 15, 2025