NASA's Mars lander harbors 26 new microbe species in its clean room facility, a new study reveals

Researchers found 26 previously unknown bacterial species in the clean rooms that might help learn about space resilience.
PUBLISHED MAY 25, 2025
(L) The Phoenix Mars Lander on the Red Planet; (R) Researcher holding a petri dish with E. coli bacteria. (Representative Cover Image Source: Getty Images | Photo by (L) Illustration by NASA/JPL; (R) Ted Horowitz Photography)
(L) The Phoenix Mars Lander on the Red Planet; (R) Researcher holding a petri dish with E. coli bacteria. (Representative Cover Image Source: Getty Images | Photo by (L) Illustration by NASA/JPL; (R) Ted Horowitz Photography)

Researchers in India and Saudi Arabia collaborated with scientists from NASA's Jet Propulsion Laboratory (JPL) in Southern California to find 26 unknown species of bacteria. "Metagenome mapping indicated less than 0.1% of the reads associated with novel species, suggesting their rarity," the study read. The species was found in the clean rooms used to prep NASA's Phoenix Mars lander for its August 2007 launch. Published in the journal Microbiome, the study mentioned how the set pressures like temperature, humidity, nutrient availability, cleaning reagents, and radiation affected its growth. These resilient microbes emphasized the need for biological cleanliness in these spaces for planetary protection as well as the prevention of bacterial growth during space missions.

The propulsion system on an engineering model of NASA's Phoenix Mars Lander in 2005 at Lockheed Martin Space Systems in Denver, Colorado. (Representative Photo by Lockheed Martin via Getty Images)
The propulsion system on an engineering model of NASA's Phoenix Mars Lander in 2005 at Lockheed Martin Space Systems in Denver, Colorado. (Representative Image Source: Getty Images | Photo by Lockheed Martin)

Clean rooms are controlled environments that are decontaminated and designed to prevent the growth of microbial life in space travel. However, microorganisms, known as extremophiles, are very resilient to harsh environments. This included the hydrothermal vents on the slopes of undersea volcanoes, vacuum of space, or NASA clean rooms, per Space.com. Alexandre Rosado, a researcher at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, stated that they intended to learn about the risk of extremophile transmission in space missions.

NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. (Representative Photo by Stocktrek Images / Getty Images)
NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. (Representative Image Source: Getty Images | Photo by Stocktrek Images)

The study wanted to identify which organisms were capable of surviving the harsh conditions of space. "This effort is pivotal for monitoring the risk of microbial contamination and safeguarding against unintentional colonization of exploring planets," Rosado added, per Phys.Org. These microbes could offer insights that could benefit life on Earth, as scientists performed genetic research on these samples. The microbes were gathered from the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida — the last stop for Phoenix before its Cape Canaveral launch.

Bacterial culture plate examination by a female researcher in a microbiology laboratory. (Representative Photo by Manjurul / Getty Images)
Bacterial culture plate being examined by a female researcher in a microbiology laboratory. (Representative Image Source: Getty Images | Manjurul)

Clean rooms are highly maintained, with astoundingly low levels of dust and microorganisms as spacecrafts get assembled in this space. The experts found 53 strains that revealed 26 novel species, and the genomes of these extremophiles were analyzed for clues of survivability. Some were linked to DNA repair, detoxification of harmful molecules, and improved metabolism. All these aspects were indicative of an increased potential to survive among these species, as per Phys.Org. These genes could potentially be used to develop new biotechnologies for food preservation and medicine. 

NASA engineers and technicians prepare the Europa Clipper spacecraft inside a Spacecraft Assembly Facility clean room at NASA's Jet Propulsion Laboratory (JPL) on April 11, 2023, in Pasadena, California. (Representative Photo by Mario Tama / Getty Images)
NASA engineers and technicians prepare the Europa Clipper spacecraft inside a Spacecraft Assembly Facility clean room at NASA's Jet Propulsion Laboratory (JPL) on April 11, 2023, in Pasadena, California. (Representative Image Source: Getty Images | Photo by Mario Tama)

"These findings not only raise important considerations for planetary protection but also open the door for biotechnological innovation," stated Junia Schultz, a postdoctoral fellow at KAUST and first author of the study. This research could also help NASA improve its clean room protocols and reduce the risk of biological contamination on future missions. Space travel has helped scientists study microbial life that developed relevant stress-resistant genes, which could be re-engineered and applied for innovative applications in medicine, food preservation, and other industries on Earth.

The NASA Europa Clipper spacecraft is viewed during a media tour inside a Spacecraft Assembly Facility clean room at NASA's Jet Propulsion Laboratory (JPL) on April 11, 2024, in Pasadena, California. (Representative Photo by Mario Tama / Getty Images)
The NASA Europa Clipper spacecraft is viewed during a media tour inside a Spacecraft Assembly Facility clean room at NASA's Jet Propulsion Laboratory (JPL) on April 11, 2024, in Pasadena, California. (Representative Image Source: Getty Images | Photo by Mario Tama)

"Together, we are unraveling the mysteries of microbes that withstand the extreme conditions of space — organisms with the potential to revolutionize the life sciences, bioengineering and interplanetary exploration," stated Kasthuri Venkateswaran, retired Senior Research Scientist at NASA's Jet Propulsion Laboratory, as per Space.com. The collaboration between KAUST and NASA is a "groundbreaking alliance" that can further the study of space life. The results of these microbial studies can help explain how resistance can be cultivated for harsh environments.

MORE STORIES

These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
1 day ago
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
1 day ago
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
Sep 26, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
Sep 19, 2025
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
Sep 15, 2025