NASA's Chandra telescope discovers fracture in galactic 'bone' caused by a speeding pulsar

Astronomers describe a fracture they discovered in the Milky Way galaxy with the assistance of NASA's Chandra X-ray Observatory telescope.
PUBLISHED MAY 6, 2025
A 3D representation of a reflection nebula around the pulsar. (Representative Cover Image Source: Pitris| Getty Images)
A 3D representation of a reflection nebula around the pulsar. (Representative Cover Image Source: Pitris| Getty Images)

NASA’s Chandra X-ray Observatory telescope helped astronomers find the reason for a cosmic “bone” fracture in the galaxy. It was hit by a fast-moving, rapidly spinning neutron star or pulsar, speeding at around 1 to 2 million miles per hour, according to NASA. The discovery was led by a team of astronomers from Northwestern University who studied the cosmic fracture in “the Snake” or G359.13142-0.20005 (G359.13 for short). The Snake is situated 26,000 light-years away from Earth and is a 230 light-year-long “Galactic Center Filament” in the constellation of Sagittarius.

Large radio telescopes against the background of the starry sky. (Representative Photo by Anton Petrus / Getty Images)
Large radio telescopes against the background of the starry sky. (Representative Image Source: Getty Images | Anton Petrus)

The image of the Snake showed a break, or a fracture, along its continuous length. Moreover, the data about the fracture was gathered from the Chandra X-ray Observatory, MeerKAT radio array, and the National Science Foundation’s Very Large Array. This data revealed an X-ray and radio source at the fracture’s site, and a possible pulsar was determined. There was also an extra source of X-rays near the pulsar that could have been from high-energy electrons and positrons. The pulsar’s hit distorted the magnetic field and caused the radio signals to be warped.

An image from NASA's Chandra X-ray Observatory of spiral galaxy NGC 4631. (Representative Photo Courtesy of NASA/Getty Images)
An image from NASA's Chandra X-ray Observatory of spiral galaxy NGC 4631. (Representative Image Source: Getty Images | NASA)

“We argue that the major kink is created by a fast-moving object punching into the Snake, distorting its magnetic structure, and producing X-ray emission,” the researchers noted in their study published in the Monthly Notices of the Royal Astronomical Society. Pulsars are dense neutron stars, released from massive stars that collapsed and went supernova. This explosion gives a powerful boost that sends the pulsars soaring across space. The radio waves that are observed on Earth are from energized particles spinning along the magnetic fields.

X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk (Image Source: NASA)
X-ray with a clear picture of a fracture in 'the Snake': NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk (Image Source: NASA)

"A secondary kink is argued to be induced by the impact of the high-velocity object producing the major kink," the researchers wrote, per Newsweek. The Snake is one of the largest and brightest of all the Galactic Center Filaments in the Milky Way. These structures are intertwined by magnetic fields that run parallel to radio wave data. The image showed the galactic center filament in blue for the X-ray and gray for the radio data. It was perpendicular to the galactic plane, and astronomers were unsure about their formation or interweaving.

This NASA composite image of galaxy NGC 3079 was created by combining images from the Hubble Space Telescope and the Chandra X-Ray Observatory on February 25, 2003. (Representative Photo by NASA/CXC/U. North Carolina/G. Cecil/Getty Images)
This NASA composite image of galaxy NGC 3079 was created by combining images from the Hubble Space Telescope and the Chandra X-Ray Observatory on February 25, 2003. (Representative Image Source: Getty Images | NASA/CXC/U. North Carolina/G. Cecil)

As the filament had two kinks, the pulsar was found to be the culprit for the bigger one, and the impact kink remained under debate. The pulsar at the center of the deformed filament was only visible due to X-ray emissions, per Astronomy. This released image consisted of two composite images of a long, thin, cosmic structure to identify the fracture and the cause. In the first image, the filament was stretched from the top to the bottom of the frame, and a few specks were around it. A close-up showed one speck to be interacting with the structure, as per NASA.

A composite image of the Crab Nebula, showing X-ray (blue) and optical (red) images superimposed, is shown in this undated photo. (Representative Photo by NASA/Getty Images)
A composite image of the Crab Nebula, showing X-ray (blue) and optical (red) images superimposed, is shown in this undated photo. (Representative Image Source: Getty Images | NASA)

The distortion was a small break in the filament, and astronomers believed the pulsar hit the filament halfway down its length. The Chandra program is overseen by NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Chandra X-ray Center of the Smithsonian Astrophysical Observatory controls the satellite’s science operations from Cambridge and flight operations from Burlington, both in Massachusetts. The telescope, based in space, was launched by NASA in 1999, and it detects X-ray emissions from high-energy regions of the universe.

MORE STORIES

New data from a NASA space telescope hints that scientists may have finally captured the first direct glimpse of the mysterious substance.
2 hours ago
Comet 3I/ATLAS might have stolen all the headlines, but it's far from the only comet that has been discovered this year.
3 days ago
The discovery throws light on how giant or dying stars behave with their surroundings and other objects around them. 
Nov 18, 2025
Scientists have spotted a red dwarf star about 130 light-years away ejecting an enormous amount of material into space.
Nov 13, 2025
A black hole has a huge mass packed into an infinitely tiny space.
Nov 13, 2025
The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
Nov 11, 2025
Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
Nov 11, 2025
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
Nov 5, 2025