Micrometeorites provide new method for reconstructing Earth's past climate, says new study

Scientists pioneered a new method to analyze the chemical composition of fossilized space particles to determine what Earth's atmosphere was like billions of years ago.
PUBLISHED JUL 31, 2025
Electron microscope image of a 240-million-year-old micrometeorite (Cover Image Source: University of Göttingen | Fabian Zahnow)
Electron microscope image of a 240-million-year-old micrometeorite (Cover Image Source: University of Göttingen | Fabian Zahnow)

A new study has revealed that ancient micrometeorites hold a unique record of Earth's atmospheric history, providing scientists with a new tool for climate reconstruction. The international research team, led by Göttingen University, has developed a method to analyze the chemical makeup of these fossilized space particles to determine the composition of the air from billions of years ago, according to the University of Göttingen

 Researchers collected around 100 kilograms of sedimentary rock and searched for fossilized micrometeorites (Image Source: )
Researchers collected around 100 kilograms of sedimentary rock and searched for fossilized micrometeorites (Image Source: University of Göttingen | Fabian Zahnow)

The findings, published in Communications Earth & Environment, center on metallic micrometeorites that melt upon entering Earth's atmosphere. During this process, their iron and nickel content oxidize, forming tiny spherical structures with oxygen atoms from the surrounding air. These microscopic "fossilized spheres" fall to Earth, where they are preserved in rock layers, creating a chemical archive of the atmosphere at the time they were formed. The new technique allows researchers to precisely measure the oxygen and iron isotopes within these fossilized micrometeorites. The isotopic ratios can then be used to infer past atmospheric conditions, including carbon dioxide concentrations and the global formation of organic matter through processes like photosynthesis. 

The various iron oxide minerals in shades of grey were formed by oxidation in the Earth's atmosphere
The various iron oxide minerals in shades of grey were formed by oxidation in the Earth's atmosphere (Image Source: University of Göttingen | Fabian Zahnow)

According to lead author Dr. Fabian Zahnow, the study demonstrates that these tiny spheres can preserve reliable isotopic traces for millions of years. “Our analyses show that intact micrometeorites can preserve reliable traces of isotopes over millions of years despite their microscopic size,” he explained. However, the researchers also stress the importance of careful geochemical analysis, as post-landing processes in soil and rock can alter the micrometeorites. This innovative approach offers a valuable complement to existing methods in geological climate research, offering a new window into the planet's distant past

Two micrometeorites (about 0.33 millimeters in size) were found among the debris of urban areas (Image Source: EOS | Jon Larsen)
Two micrometeorites (about 0.33 millimeters in size) were found among the debris of urban areas (Image Source: EOS | Jon Larsen)

This new research builds on a 2016 study led by Monash University's Dr. Andrew Tomkins. His team analyzed the oldest fossilized micrometeorites ever found, 2.7 billion-year-old cosmic dust from ancient sedimentary rocks in Western Australia. The findings, published in the journal Nature, challenged the long-held belief that Earth's ancient atmosphere was universally oxygen-poor, as per ANSTO

Using advanced microscopes, the researchers discovered that the majority of these metallic micrometeorites had been oxidized into iron oxide minerals upon entry, suggesting a surprisingly high concentration of oxygen in the upper atmosphere. Calculations by Imperial College's Dr. Matthew Genge indicated that these oxygen levels were similar to what we see today. This created a puzzle: how could the upper atmosphere be rich in oxygen when the lower atmosphere was known to be oxygen-starved? 

Young scientist working in the Laboratory (Representative Image Source: Getty | Twenty47studio)
Young scientist working in the Laboratory (Representative Image Source: Getty | Twenty47studio)

Dr. Tomkins proposed that Earth's atmosphere at the time was layered, with little vertical mixing. A layer of methane haze in the middle atmosphere could have absorbed ultraviolet light, creating a warm barrier that separated the oxygen-rich upper atmosphere from the oxygen-poor air below. The upper-atmospheric oxygen would have been produced by the sun's UV rays breaking down carbon dioxide. These incredible findings show that by studying fossilized space dust barely the width of a human hair, scientists can gain new insights into the chemical makeup of our planet's atmosphere from billions of years ago. The next step, Dr. Tomkins noted, is to continue extracting and studying micrometeorites from rocks spanning a billion-year period to better understand how atmospheric chemistry and structure evolved over time. 

MORE STORIES

The detection, made by NASA’s Swift Observatory, provides the first-ever opportunity to put an interstellar comet on the same chemical scale as objects in our solar system.
13 hours ago
On October 4, 2025, the Perseverance rover's Navcam captured an image of 3I/ATLAS revealing a bright streak that was significantly elongated.
1 day ago
The M87 galaxy's colossal one-sided jet, initially detected over a century ago, has become a 'prime laboratory' for scientists seeking to understand Active Galactic Nuclei (AGN).
5 days ago
These events are known to trigger geomagnetic storms and enhance aurora displays.
7 days ago
While the Moon, Mars, and Earth all harbor lava tubes formed by ancient flowing rock, their existence on Venus had previously been a matter of pure speculation.
Sep 30, 2025
The 'Flagship 2 galaxy mock' simulates over 3.4 billion galaxies, precisely matching Euclid's expected view across a third of the sky.
Sep 29, 2025
Researchers believe the interstellar object is far more massive than previously discovered interstellar objects 1I/'Oumuamua and 2l/Borisov.
Sep 26, 2025
In 2020, scientists were surprised to find hematite, a form of rust, distributed across the Moon's higher latitudes, beginning the mystery of how it formed.
Sep 25, 2025
Dr. Manuel Scherf and Professor Helmut Lammer of the Austrian Academy of Sciences presented findings indicating that the chances of discovering life like ours are not favorable.
Sep 25, 2025
Researchers believe this comet is a sign of many more interstellar discoveries to come.
Sep 25, 2025