FU Orionis

In late 1936, a 16th-magnitude star erupted in the constellation Orion, and by early the next year it had attained 10th magnitude – that is a brightening by a factor of over 250!
UPDATED JUN 26, 2024
proto star
proto star

Stars that do something are fun to watch. In late 1936, a 16th-magnitude star erupted in the constellation Orion, and by early the next year it had attained 10th magnitude – that is a brightening by a factor of over 250! Accompanying the mysterious star was a bright nebulosity, which glowed as a reflection of light from the luminous star.

The 1936 uprising of FU Orionis was first thought to be a nova event. Novae (like the famed example Nova Cygni 1975, which appeared on August 29, 1975, and reached magnitude +2) are hardly unusual; many are found each year. They are surface explosions that take place on white dwarfs when they accumulate too much fresh hydrogen from a companion star. When the fresh fuel is burned, novae quickly fade. FU Orionis, however, challenged expectations by staying lit up for over 70 years. The star still shines at 10th magnitude today.

Since no other star was known to behave like FU Orionis and since little was known about the star itself, astronomers waited for further clues from FU Orionis or more examples to emerge. In 1969, a star embedded in the “East Texas” region of the North America Nebula (NGC 7000) jumped from 16th to 10th magnitude. The star, V1057 Cygni, attained maximum luminosity in mid-1970, and afterwards it slowly faded; it now lies three magnitudes below peak brightness.

Since then, another eight similarly behaving stars have been discovered and FU Orionis, the first, is the privileged prototype. FU Orionis stars are in fact pre-main sequence stars in the early stages of stellar development. They have only just formed from clouds of dust and gas in interstellar space, which occurs in active star-forming regions.

At this early stage of evolution, a star is surrounded by an accretion disk, and matter is falling onto the outer regions of the disk from the surrounding interstellar cloud. Thermal instabilities, most likely in the inner portions of the accretion disk, initiate an outburst and the young star increases its luminosity. Our Sun probably went through similar events as it was developing.

FU Orionis is easily visible in a small backyard telescope. It lies in northern Orion near the imaginary shoulder of the great hunter, about 3° northwest of Betelgeuse and less than 2° southeast of Collinder 69. This is a wonderful and yet woefully neglected open star cluster for small telescopes, consisting of the stars that form Orion’s “head”.

MORE STORIES

On February 13, 2023, the KM3NeT underwater telescope registered the high-energy 'ghost particle.'
16 hours ago
These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
5 days ago
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
5 days ago
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
Sep 26, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
Sep 19, 2025
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025