Astronomers were perplexed by 'impossible’ merger of two giant black holes—now they know how it happened

The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins
UPDATED 45 MINUTES AGO
A 3D illustration of the merging of black holes in deep space. (Representative cover image source:  Getty Images | Pitris)
A 3D illustration of the merging of black holes in deep space. (Representative cover image source: Getty Images | Pitris)

Unprecedented gravitational waves were detected in 2023, when two giant black holes collided and merged into a supermassive black hole. The discovery surprised scientists, as in their opinion, it was something that should not have happened. Seeking answers, astronomers at the Flatiron Institute’s Center for Computational Astrophysics (CCA) conducted comprehensive simulations. To find how these black holes merged, they traced the lives of the parent stars from birth to collapse. The Astrophysical Journal Letters published the results of these simulations, which revealed the aspect that was missing from previous studies: the role of magnetic fields.

This artist's concept shows a supermassive black hole surrounded by a disk of gas (Representative Image Source: Caltech | R. Hurt)
This artist's concept shows a supermassive black hole surrounded by a disk of gas (Representative Image Source: Caltech | Photo by R. Hurt)

The huge collision was detected around 7 billion light-years away with huge masses and extreme black hole spins. Known as GW231123, the collision was observed by the LIGO-Virgo-KAGRA collaboration, as per the Simon Foundation. The black holes weighed 85 times and 66 times the mass of our Sun, with the former landing in the "mass gap." This was an area thought to be impossible for black holes to form. This merger is unlikely to be a single event, as per a new theoretical model, but a collision inside a dense stellar cluster that occurred hierarchically. 

This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes (Image Source: NASA, ESA | Leah Hustak)
This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes (Representative Image Source: NASA, ESA | Leah Hustak)

“No one has considered these systems the way we did; previously, astronomers just took a shortcut and neglected the magnetic fields,” said Ore Gottlieb, an astrophysicist at the CCA and lead author of the new study. “But once you consider magnetic fields, you can actually explain the origins of this unique event,” they added. The team conducted two stages of computational simulations. The first simulation rendered the life of a giant star 250 times the mass of the sun, from when a star starts to burn hydrogen to when it runs out and collapses into a supernova. 

As two super-massive black holes spiral around each other and eventually merge, they create gravitational waves (Image Source: NASA)
As two super-massive black holes spiral around each other and eventually merge, they create gravitational waves (Representative Image Source: NASA)

The supernova stage brought it down to 150 times the sun’s mass from burning through enough fuel. This placed it just above the mass gap and was big enough to leave behind a black hole upon collapse, as per Phys Org. The second set of complicated simulations dealt with the supernova’s aftermath, which accounted for the magnetic fields. The supernova remnants had a cloud of stellar material with magnetic fields and a black hole at the center. The simulations challenged the assumption about how the final mass of the black hole matched the massive star.

This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole (Representative Cover Image Source: NASA/JPL-Caltech)
This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole (Representative Image Source: NASA/JPL-Caltech)

It showed that after the star collapsed, the leftover cloud immediately fell into the black hole. However, this cloud became a spinning disk and caused the black hole to spin faster until the material fell into an abyss. This was only possible if the initial star was spinning rapidly. The presence of magnetic fields exerts pressure on the debris disk. This ejects some material away from the black hole at nearly the speed of light. This outflow eventually reduced the material’s bulk, which fed into the black hole, an effect that was greater with stronger magnetic fields.

Binary Black Hole Merger Graphics for use alongside GW241011 and GW241110 (Image Source: Carl Knox, OzGrav, Swinburne University of Technology)
Binary Black Hole Merger Graphics for use alongside GW241011 and GW241110 (Image Source: Carl Knox, OzGrav, Swinburne University of Technology)

The simulations showed that the magnetic fields ended up creating a final black hole in the mass gap. It suggested a connection between the mass and spin of black holes, likely following a pattern. It was also found that these kinds of black holes create bursts of gamma rays when they form, which could be observed. “We found the presence of rotation and magnetic fields may fundamentally change the post-collapse evolution of the star, making black hole mass potentially significantly lower than the total mass of the collapsing star,” Gottlieb explained.

More on Starlust

Scientists detect a seven-hour gamma ray burst and trace it back to a black hole plunging into a bloated star

Astronomers witness a supermassive black hole violently tearing apart a star thousands of light-years from galactic core

MORE STORIES

Data from the NSF-funded Zwicky Transient Facility pinpointed the energy source: J2245+3743, an active galactic nucleus 500 million times more massive than our Sun.
7 hours ago
Astronomers pinpointed BiRD near the extensively studied quasar J1030+0524, which resides at a distance of about 12.5 billion light-years from Earth.
5 days ago
Researchers analyzing JWST observations of LAP1-B determined the distant galaxy exhibits properties consistent with the earliest, hypothesized stars.
6 days ago
Generated during the initial camera commissioning in June 2025, the discovery stems from the observatory's Virgo First Look images.
Oct 31, 2025
The findings confirm the presence of rare binary systems and suggest certain black holes are second-generation, forged in earlier cosmic collisions.
Oct 29, 2025
New research suggests a massive black hole is the primary force preventing Segue 1's small complement of stars from drifting into the void.
Oct 28, 2025
The rocky exoplanet GJ 251 c, estimated to be nearly four times the mass of Earth, has been classified as a 'super-Earth.'
Oct 24, 2025
Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
Oct 14, 2025
An international research collective has serendipitously discovered an ultra-luminous infrared galaxy (ULIRG), a system intensely forming stars, hidden behind the distant and well-known Cloverleaf quasar, H1413+117.
Oct 13, 2025
Researchers focused on the quasar OJ287, an intensely bright galactic core whose erratic light patterns had long suggested the presence of a pair of orbiting black holes.
Oct 10, 2025