Astronomers uncover complex organic molecules in young star's disk, hinting at cosmic origins of life

Astronomers used ALMA to detect 17 complex organic molecules in the disk of the active protostar V883 Orionis.
PUBLISHED JUL 26, 2025
This artist’s impression shows the planet-forming disc around the star V883 Orionis (Representative Cover Image Source: ESO | L. Calçada)
This artist’s impression shows the planet-forming disc around the star V883 Orionis (Representative Cover Image Source: ESO | L. Calçada)

Astronomers have unearthed a trove of complex organic molecules, including potential precursors to the fundamental building blocks of life, within the swirling disc of a burgeoning star. This landmark finding challenges long-held theories about the origins may be more universally present across the cosmos than previously believed, according to the Max Planck Society

This artist’s impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc water is frozen out as ice and therefore can’t be easily detected (Image Source: )
This artist’s impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc, water is frozen out as ice and therefore can’t be easily detected (Representative Image Source: ESO | L. Calçada)

A team led by Abubakar Fadul of the Max Planck Institute for Astronomy (MPIA), utilising the powerful Atacama Large Millimeter/submillimeter Array (ALMA), identified 17 complex organic molecules (COMs) within the protoplanetary disk of V883 Orionis, an outbursting protostar. Among these, the first-ever tentative detections of ethylene glycol and glycolonitrile stand out. Glycolonitrile, in particular, is a known precursor to vital amino acids like glycine and alanine, as well as adenine, a key component of DNA and RNA. 

ALMA images of the disc around the star V883 Orionis, showing the spatial distribution of water (left, orange), dust (middle, green), and carbon monoxide (blue, right) (Image Source: ESO |  B. Saxton)
ALMA images of the disc around the star V883 Orionis, showing the spatial distribution of water (left, orange), dust (middle, green), and carbon monoxide (blue, right) (Image Source: ESO | B. Saxton)

This discovery, published in the Astrophysical Journal Letters, provides a crucial missing link in understanding the evolution of these life-enabling molecules. Before this, scientists had hypothesized a "reset" scenario, suggesting that the energetic processes accompanying star formation might destroy existing complex chemistry, necessitating a re-synthesis within the newly formed planetary disks. 

This diagram illustrates how a cloud of gas collapses to form a star with a disc around it, out of which a planetary system will eventually form (Representative Image Source: ESO | L. Calçada)
This diagram illustrates how a cloud of gas collapses to form a star with a disc around it, out of which a planetary system will eventually form (Representative Image Source: ESO | L. Calçada)

However, these new observations indicate a different story. “Our results suggest that protoplanetary discs inherit complex molecules from earlier stages, and the formation of complex molecules can continue during the protoplanetary disc stage,” stated MPIA co-author Kamber Schwarz. This implies a continuous chemical enrichment, with the seeds of life potentially being assembled much earlier in interstellar space. The presence of simpler organic molecules, such as methanol, in pre-stellar regions, and now the detection of more intricate compounds like ethylene glycol in a young star's disk, supports a direct evolutionary path for prebiotic chemistry. Tushar Suhasaria, head of MPIA's Origins of Life Lab and a co-author, noted that UV irradiation, common in these environments, could facilitate the formation of ethylene glycol. 

The complex organic molecules are typically locked away in icy dust grains within these nascent systems. Their detection in V883 Orionis was made possible by intense outbursts from the central star. As the protostar accretes gas, these growth spurts generate powerful radiation, heating the surrounding disc and sublimating the ice, thereby releasing the trapped molecules into a gaseous state detectable by ALMA. “Complex molecules, including ethylene glycol and glycolonitrile, radiate at radio frequencies. ALMA is perfectly suited to detect those signals,” explained Schwarz. The high-altitude observatory in Chile allowed astronomers to pinpoint the V883 Orionis system and identify these faint spectral signatures, as mentioned by the Max Planck Society

While highly promising, the research team acknowledges that further analysis is needed. “Higher resolution data will confirm the detections of ethylene glycol and glycolonitrile and maybe even reveal more complex chemicals we simply haven't identified yet,” Schwarz added. Fadul also suggested exploring other regions of the electromagnetic spectrum to potentially uncover even more evolved molecules. This groundbreaking finding significantly strengthens the hypothesis that the conditions for life's emergence are fore unique, instead hinting at a widespread cosmic predisposition for biological processes. The ongoing quest to unravel the full spectrum of molecules in these stellar nurseries promises to reshape our understanding of life's cosmic origins. 

MORE STORIES

The flare peaked at 9:49 p.m. ET on November 30 and triggered an R3-level radio blackout on the sunlit side of Earth.
18 hours ago
The sunspot, initially classified as large, came fully into view on November 30, confirming its truly vast size.
1 day ago
The consequences of the Moon exploding will be felt in a variety of ways, and none of them will be good.
3 days ago
The SuperCam's microphone unexpectedly picked up the signals from two dust devils.
5 days ago
Comet C/2025 K1 ATLAS, an Oort Cloud object found by ATLAS in May, skimmed past the Sun on October 8 at 31 million miles.
5 days ago
Harvard astronomer Avi Loeb thinks that the nature of the two tails implies a mass loss that is not visible in 3I/ATLAS.
6 days ago
Unlike geology on Earth, which is driven by the movement of deep rock, the action on icy moons is powered by the dynamics of water and ice.
7 days ago
After a decade focused on simple 'biosignatures,' researchers are increasingly pivoting the search for alien life toward detecting technological output.
7 days ago
After the big collision, Theia's traces could be found in the composition of the Earth and the Moon.
Nov 25, 2025
Amateur astronomers Michael Jäger and Gerald Rhemann used a standard 12-inch telescope and a specialized camera to capture the extraordinary color image.
Nov 24, 2025