Research on Ryugu asteroid uncovers minerals older than any found on Earth

Hayabusa2’s Ryugu samples provide insights into Earth’s early water, organic materials, and the beginnings of life.
UPDATED AUG 26, 2025
A digital illustration of an asteroid. (Representative Cover Image Source: Getty Images | Andrzej Wojcicki/Science Photo Library.)
A digital illustration of an asteroid. (Representative Cover Image Source: Getty Images | Andrzej Wojcicki/Science Photo Library.)

Hayabusa2, the uncrewed Japanese spacecraft, successfully returned in 2020 with small fragments from the near-Earth asteroid Ryugu. It then provided researchers with the first perfect set of samples from a carbon-rich asteroid. The research came out in the April 19, 2024, issue of Geosciences. Grains from those samples were studied at the National Synchrotron Light Source II (NSLS-II) and this research revealed new details about the asteroid's composition and origin.

An image of an asteroid over the planet Earth.
(Representative Image Source: Getty Images | Sdecoret.)
An image of an asteroid over the planet Earth. (Representative Image Source: Getty Images | Sdecoret.)

The said information could help answer important questions about how water and organic matter existed on early Earth, forming the building blocks of life, noted Phys.Org. NSLS-II is a U.S. Department of Energy (DOE) Office of Science user facility at Brookhaven National Laboratory. The research collaboration involves scientists from Stony Brook University, Brookhaven Lab, the State University of New York at Plattsburgh, the Tokyo Institute of Technology, and Brown University.

An image of a comet.
(Representative Image Source: Getty Images | 	Buradaki.)
An image of a comet. (Representative Image Source: Getty Images | Buradaki.)

The Hayabusa2 mission was carried out by the Japan Aerospace Exploration Agency (JAXA) and it launched in December 2014 and landed on Ryugu in February 2019. On December 6, 2020, the spacecraft flew by Earth to drop off sample capsules. These capsules were safely protected by parachutes that opened after falling through the atmosphere. The mission aimed to collect samples from Ryugu. This would help scientists better understand the origin and history of primitive, organic-rich asteroids. In turn, this knowledge could provide more insight into how the planets in the solar system formed.

Ryugu, discovered in 1999, likely came from a larger proto-planetary body that formed in the cold outer regions of the solar system. Its composition would have included water ice and carbon dioxide ice. This body underwent mild heating to about 212 degrees Fahrenheit (100 degrees Celsius) due to short-lived radioactive elements. This heating melted the ice and released fluids that interacted with and changed its original mineral and organic components, leading to the formation of many secondary compounds. These processes created new minerals not found on Earth and triggered the formation of complex organic molecules like amino acids, which are essential building blocks for life.

All of this occurred about 4.7 billion years ago, and the material has remained largely unchanged in interplanetary space since then. The samples collected from Ryugu contain evidence of these processes from the early days of the solar system. Earth is constantly changing, and over time, its natural processes have erased most of the chemical evidence of how the solar system first formed. Asteroids like Ryugu preserve this vital part of the solar system's history. Researchers obtained two tiny Ryugu grains through a competitive process. One grain came from the surface, while the other came from below.

At NSLS-II, they used noninvasive X-ray methods to show each sample's elemental composition, distribution, and molecular structure without cutting them. "The beauty of these combined techniques is that we can measure the chemistry of both the exterior and the interior of a sample without damaging it. This is important to preserve such rare and unique samples, especially when hundreds of researchers are competing for access to so little material,” noted project lead, Paul Northrup of Stony Brook University in the press release. At NSLS-II, researchers studied Ryugu grains using X-ray fluorescence microtomography and tender X-ray microspectroscopy.

A scientist is looking at samples through a microscope. 
(Representative Image Source: Getty Images | Gorodenkoff.)
A scientist is looking at samples through a microscope. (Representative Image Source: Getty Images | Gorodenkoff.)

They discovered a rich mix of minerals and compounds, including selenium, manganese, iron, sulfur, phosphorus, silicon, calcium, and copper. These findings showed several fluid-driven changes that shaped the asteroid’s composition. Sulfur chemistry provided important clues about fluid interactions and the formation of organic matter. The results help reconstruct the mineral history of Ryugu and other carbon-rich asteroids. The team plans to compare these insights with Bennu samples recently returned by NASA’s OSIRIS-REx mission.

MORE STORIES

HH 80/81, as captured by the Hubble telescope in the latest image, are the brightest Herbig-Haro (HH) objects known to exist.
1 day ago
This newly discovered explosion from the dawn of time is helping scientists map the chemical evolution of the first galaxies.
5 days ago
The galaxy in question dates back to about 3 billion years after the Big Bang.
Jan 13, 2026
'We're still trying to figure out why black holes are suddenly more common in galaxies like our own,' said one of the scientists.
Jan 12, 2026
The four planets orbit a very young star, V1298 Tau, and have already lost much of their atmospheres.
Jan 8, 2026
Astronomers detect the earliest known galaxy cluster gas from just 1.4 billion years after the Big Bang.
Jan 8, 2026
The James Webb Space Telescope has identified massive, short-lived stars that are essentially 'seeds' for the universe's first supermassive black holes.
Jan 7, 2026
These newly-discovered objects look like stars but behave like galaxies.
Jan 7, 2026
Astronomers used the XRISM mission to separate signals and analyze the extreme gravitational forces at work in active galactic nucleus MCG–6-30-15.
Jan 7, 2026