Astronauts
Astronomy
Constellation
Deep Sky Objects
Moon
Stargazing
Telescope
About Us Contact Us Privacy Policy Accuracy & Corrections Terms & Condition
COPYRIGHT. All contents of on the site comporting the Starlust branding are Copyright 2019. All rights reserved.
STARLUST.ORG / ASTRONOMY

Physicist claims universe is 26.7 billion years old — nearly double current estimates

A groundbreaking finding directly addresses the perplexing 'impossible early galaxy problem.'
PUBLISHED 7 HOURS AGO
Vector colorful abstract universe background with galaxies and glowing stars (Representative Cover Image Source: Getty | Katerina Sisperova)
Vector colorful abstract universe background with galaxies and glowing stars (Representative Cover Image Source: Getty | Katerina Sisperova)

A study from the University of Ottawa is poised to significantly challenge the prevailing understanding of the universe's age, proposing it could be a staggering 26.7 billion years old, nearly double the current estimate of 13.7 billion years. This groundbreaking work directly addresses the long-standing "impossible early galaxy problem" that has perplexed astrophysicists, per the University of Ottawa

In this mosaic image stretching 340 light-years across, NASA's James Webb Space Telescope’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light (Image Source: NASA/ESA)
In this mosaic image stretching 340 light-years across, NASA's James Webb Space Telescope’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light (Image Source: NASA/ESA)

The established cosmological model, Lambda-CDM, has largely dictated the universe's age based on the expansion rate since the Big Bang and observations of ancient stars. However, discrepancies have emerged, notably the existence of stars seemingly older than the universe itself and the discovery of highly evolved, massive, yet surprisingly small galaxies in the early universe by the James Webb Space Telescope, appearing just 300 million years after the Big Bang. These observations defy the expected timeline for such cosmic development. 

Hubble observations have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe (Image Source: NASA/ESA)
Hubble observations have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe (Image Source: NASA/ESA)

Dr. Rajendra Gupta, an adjunct professor of physics at the University of Ottawa and the study's author, introduces a revised model that reinterprets cosmic redshift and incorporates evolving fundamental constants. "Our newly-devised model stretches the galaxy formation time by a several billion years, making the universe 26.7 billion years old, and not 13.7 as previously estimated," he said in a statement. Gupta's work integrates a modified version of Fritz Zwicky's "tired light" theory, which posits that light loses energy over vast distances. While previously dismissed as conflicting with observations, Gupta demonstrates that when combined with the concept of an expanding universe, tired light can account for redshift as a hybrid phenomenon, rather than solely due to expansion. 

Furthermore, the study incorporates Paul Dirac's hypothesis of evolving "coupling constants," fundamental physical constants governing particle interactions. By allowing these constants to change over cosmic galaxies, stretching them from mere hundreds of millions of years to several billion years. This extended timeline offers a more plausible explanation for the advanced maturity and substantial mass observed in these ancient galaxies. 

This deep-field view of the sky (center) taken by NASA's Hubble and Spitzer space telescopes is dominated by galaxies — including some very faint, very distant ones — circled in red (Image Source: NASA/JPL-Caltech)
This deep-field view of the sky (center) taken by NASA's Hubble and Spitzer space telescopes is dominated by galaxies — including some very faint, very distant ones — circled in red (Image Source: NASA/JPL-Caltech)

The study also calls for a re-evaluation of the "cosmological constant," typically associated with dark energy and the universe's accelerating expansion. Gupta proposes a revised constant that accounts for the evolution of the coupling constants. This adjustment within the cosmological model not only helps reconcile the advanced state of early galaxies but also provides a more accurate framework for understanding their unexpectedly small sizes. This new model, if widely accepted, could fundamentally reshape our understanding of cosmic evolution and the timeline of the universe's existence. The findings, titled “JWST early Universe observations and 𝚲CDM cosmology," were published in the Monthly Notices of the Royal Astronomical Society on July 7, 2023. 

Adding further insight into the dynamic early universe, an international research team has detected the most distant "mini-halo" of energetic particles yet. This remarkable discovery, made using the Low Frequency Array (LOFAR) radio telescope, involves a colossal cloud of high-energy particles enveloping a galaxy cluster so far away that its light has traveled for 10 billion years to reach Earth. This effectively doubles the previous record for such an observation. 

Composite image of SpARCS1049 showing the optical color image taken by the Hubble Space Telescope in addition to the radio emission as detected by LOFAR (red) and the X-ray emission as detected by the Chandra Space Telescope (blue) (Cover Image Source: Astron/)
Composite image of SpARCS1049 showing the optical color image taken by the Hubble Space Telescope in addition to the radio emission as detected by LOFAR (red) and the X-ray emission as detected by the Chandra Space Telescope (blue) (Image Source: Astron/)

These groundbreaking findings suggest that even the universe's grandest structures, galaxy clusters, have been permeated by high-energy particles for a significant portion of their existence. Mini-halos are vast regions of highly energetic charged particles residing in the vacuum between galaxies within a cluster, emitting detectable radio waves. This observation strongly implies that energetic processes were actively shaping galaxy clusters during the universe's nascent stages, offering crucial clues about the evolution of large-scale cosmic structures. 

MORE ON Starlust
A groundbreaking finding directly addresses the perplexing 'impossible early galaxy problem.'
7 hours ago
This unprecedented look into a very-high-velocity cloud (VHVC) reshapes our understanding of interstellar structure formation, yielding vital clues about early galaxy evolution.
1 day ago
This groundbreaking discovery offers a striking glimpse into the nascent stages of a solar system's formation, mirroring the very dawn of our own Sun's planetary beginnings.
4 days ago
While approximately 60 satellite galaxies have been identified, the findings indicate dozens of others could be orbiting our galaxy nearby.
5 days ago
Approximately every 15 years, Titan casts its small, dark shadow upon Saturn's disk.
6 days ago
The 'water ice-rich' interstellar object is only the third known object from beyond the solar system ever reported in our cosmic neighbourhood.
7 days ago
Researchers point to supernovae as the probable cause for the late Devonian (372 million years away) and older Ordovician (445 million years away) extinction events.
7 days ago
New research on the meteorite's tiny fragments directly contests the long-held scientific view that inner solar system planets formed earlier than outer ones.
Jul 12, 2025
The 'Hubble tension' arises from the conflicting early universe expansion predictions versus faster local observations.
Jul 12, 2025
A captivating 25-minute time exposure reveals Earth's sequential lightning flashes brightly illuminating the planet.
Jul 12, 2025
These incredible images are giving scientists vital new information about space weather events that could affect Earth.
Jul 11, 2025
The rock will undergo thorough analysis using the Alpha Particle X-ray Spectrometer (APXS), Mars Hand Lens Imager (MAHLI), and Chemistry and Camera (ChemCam) instruments.
Jul 10, 2025
Central to the research is NASA's Curiosity rover's discovery of carbonate-rich rocks that, like limestone, absorb and sequester carbon dioxide from the atmosphere.
Jul 9, 2025
To retrieve the valuable Martian samples from the Perseverance rover, Lockheed Martin has introduced a significantly more cost-effective mission design.
Jul 9, 2025
Losing access to this ongoing data severely limits scientists' capacity to monitor climate change and assess the escalating threat of sea-level increases.
Jul 7, 2025
NASA's TEMPO mission is a first for the agency, using a spectrometer to continuously monitor air quality during daylight hours from space, providing highly detailed measurements.
Jul 7, 2025
Scientists are predicting Earth will continue its trend of record-setting rapid rotations in 2025, with notably shorter days expected around July 9, July 22, and August 5.
Jul 5, 2025
Out of the 10,000-plus systems, a majority of them had never been discovered by astrophysicists in the past.
Jul 5, 2025
Like Earth's dinosaur fossils that unlock secrets of prehistoric life, the galaxy KiDS J0842+0059 provides an extraordinary look at the universe's initial stages.
Jul 4, 2025
This flight is the eleventh crew rotation to the International Space Station under NASA's Commercial Crew Program.
Jul 3, 2025