NASA’s James Webb Telescope discovers evidence of a black hole formed without a supernova explosion

Named for its unique shape, the 'Infinity Galaxy' is a cosmic smash-up that appears to be the first-ever observed 'direct collapse' black hole.
UPDATED JUL 21, 2025
The Infinity Galaxy, the result of two colliding spiral galaxies, is composed of two rings of stars (seen as ovals at upper right and lower left) (Cover Image Source: NASA | P. van Dokkum)
The Infinity Galaxy, the result of two colliding spiral galaxies, is composed of two rings of stars (seen as ovals at upper right and lower left) (Cover Image Source: NASA | P. van Dokkum)

In a stunning find that could rewrite the story of how the universe's most massive black holes came to be, astronomers have used the James Webb Space Telescope to uncover a rare and peculiar galactic event. Dubbed the "Infinity Galaxy" for its distinctive shape, this cosmic smash-up appears to be a real-time laboratory for a "direct collapse" black hole, a long theorized but never-before-seen phenomenon, as per NASA



 

The Infinity Galaxy's bizarre structure initially caught the eye of researchers Pieter van Dokkum of Yale University and Gabriel Brammer of the University of Copenhagen. Its distinct shape, two compact galactic nuclei, each encircled by a star-studded ring, resembles an infinity symbol. The team believes this unique formation resulted from a head-on collision between two galaxies. Further analysis, however, revealed a truly astonishing detail: an active, supermassive black hole located not within either of the two galactic nuclei, but suspended in a vast expanse of gas between them. This unusual placement has led scientists to theorize that the black hole was formed via a "direct collapse" of a massive gas cloud, bypassing the traditional process where a black hole forms from a collapsing star and subsequent supernova. 



 

This finding could solve a long-standing cosmic mystery. The "light seed" theory of black hole formation, which starts with smaller black holes born from supernovae, struggles to explain the existence of colossal black holes found by Webb in the early universe, as this process takes a considerable amount of time. The "heavy seed" theory, in contrast, proposes that black holes can form rapidly from the direct collapse of a large gas cloud. "Finding a black hole that’s not in the nucleus of a massive galaxy is in itself unusual, but what’s even more unusual is the story of how it may have gotten there," said Pieter van Dokkum, the lead author of the study. He further added, "We think we’re witnessing the birth of a supermassive black hole – something that has never been seen before."

This illustration depicts a possible
This illustration depicts a possible "seed" for the formation of a supermassive black hole (Representative Image Source: NASA | M. Weiss)

The researchers gathered crucial evidence to support this hypothesis. Their observations confirmed the presence of a large swath of ionized hydrogen gas directly surrounding the black hole and, most importantly, showed that the black hole's velocity perfectly matched that of the gas. This kinematic link strongly suggests the black hole formed directly from the gas cloud, rather than being a runaway object or part of a separate, unseen galaxy. 

This giant gas cloud, which scientists call a “halo,” is located in the system called NGC 6240 (Image Source: NASA | E. Nardini et al)
This giant gas cloud, which scientists call a “halo,” is located in the system called NGC 6240 (Image Source: NASA | E. Nardini et al)

As an unexpected bonus, the team discovered that each of the two galactic nuclei also hosts its own active supermassive black hole, making the Infinity Galaxy a rare system with three confirmed active black holes. “We can’t say definitively that we have found a direct collapse black hole," van Dokkum concluded, "but we can say that these new data strengthen the case that we’re seeing a newborn black hole, while eliminating some of the competing explanations." 

A striking new image, combining data from NASA's Hubble and James Webb Space Telescopes, offers an unprecedented look at two star clusters nestled within the Small Magellanic Cloud, a dwarf galaxy orbiting our Milky Way. The celestial duo, designated NGC 460 and NGC 456, showcases the intricate interplay of gas, dust, and nascent stars. This detailed observation of star birth provides a new window into the processes that shape galaxies, a discovery that complements the ongoing research into the mysteries of black hole formation revealed in the Infinity Galaxy. 

MORE STORIES

New, high-resolution images from the Atacama Large Millimeter/submillimeter Array (ALMA) show that the star's immense dust ring is not only warped, but its lopsidedness, or eccentricity, changes with distance from the star.
Sep 9, 2025
Located within the Taurus star-forming region, 525 light-years away, the IRAS 04302+2247 system is offering scientists a rare, edge-on view of a protoplanetary disc.
Sep 9, 2025
The number of electrical discharges on a spacecraft correlates with the electrons in space, damaging the sensitive systems on board.
Sep 5, 2025
This groundbreaking discovery is a direct contradiction to most known systems, where water vapor is the primary component.
Sep 3, 2025
The satellite’s archival data indicates that the object in our solar system, two months before it was found, was clearly active and moving through space.
Aug 31, 2025
One of the most studied events in space, the Cassiopeia A supernova has much more to reveal about its past, as indicated by recent research.
Aug 30, 2025
The loops averaged 29 miles in width, possibly as thin as 13 miles, making them the smallest coronal loops ever imaged.
Aug 26, 2025
The exoplanet was initially flagged as a promising candidate after its 2022 discovery in TESS data.
Aug 25, 2025
The Perseverance rover is now studying the modern effects of wind and water on Mars, beginning with a key investigation of wind-formed megaripples at 'Kerrlaguna.'
Aug 25, 2025
Astronomers have identified a prime strategy for the search for extraterrestrial intelligence (SETI).
Aug 24, 2025