Astronomers took another look at the 'Wow!' signal and discovered it was even stronger than previously thought

Since it was discovered in 1977, the 'Wow!' signal has been one of the most mysterious radio signals in SETI history.
PUBLISHED 4 HOURS AGO
The scan of a color copy of the original computer printout of the "Wow!" signal.
(Cover Image Source: Big Ear Radio Observatory and North American AstroPhysical Observatory (NAAPO))
The scan of a color copy of the original computer printout of the "Wow!" signal. (Cover Image Source: Big Ear Radio Observatory and North American AstroPhysical Observatory (NAAPO))

Since its discovery in 1977, the “Wow!” signal has stayed in the minds of SETI supporters as one of the most mysterious radio signals ever found. A new paper, coauthored with volunteers, provides corrections and new insights into where it came from. The paper is published on the arXiv preprint server. In 1977, limited computer technology made it hard to interpret the data, but researchers have now revisited decades of unpublished observations. This has led to the most detailed analysis of the mysterious signal so far and revealed new clues about its origin.

Very Large Array radio-telescopes.
(Representative Image Source: Getty Images | 	Mark Newman.)
Very Large Array radio-telescopes. (Representative Image Source: Getty Images | Mark Newman.)

Using modern computing technology, the volunteers processed over 75,000 pages of original data with an optical character recognition routine, with help from human validators, as noted by Phys.Org. For the first time, researchers ran a detailed computer analysis on the original signal, which led to small but important revisions. They found that three key characteristics had changed. The possible source region in the sky was narrowed with two-thirds greater certainty. The frequency also shifted slightly from 1420.4556 MHz to 1420.726 MHz. While subtle, this change suggests the source would need to spin much faster to produce such a difference.



 

Perhaps the most interesting update to the signal was a new estimate of its flux density, or strength, the study pointed out. In radio astronomy, the signal’s strength is now measured at about 250 Janskys, which is a unit that describes the intensity of radio waves. Earlier estimates suggested it was between 54 and 212, meaning the signal was stronger than initially thought. A small timing error of 21 seconds was also discovered, but it didn’t significantly affect the result. However, they do impact astronomers' understanding of it. The biggest update came from correcting a mislabeled channel in the filter system. This change led to a more precise frequency measurement of the signal.

An image of the Milky way over huge radio telescopes (Image Source: Getty | Haitong Yu)
An image of the Milky way over huge radio telescopes (Image Source: Getty | Haitong Yu)


 

Ultimately, the signal remains as puzzling as ever, though the paper attempted to clarify some possible sources as claimed by Phys.Org. The study excluded any man-made sources and it noted that there were no TV stations or satellites in the area at the time. Instead, it suggests a possible natural astrophysical origin. This makes radio interference a less likely explanation for the Wow! Signal. The sun wasn't very active in 1977, which lowered the chances that solar phenomena caused by the signal. According to the researchers, an internal software error is also unlikely and the signal displayed a natural-looking pattern.

This suggests that the signal likely comes from an astronomical source, but isn't likely to be extraterrestrial. The most likely cause is a hydrogen cloud in space, researchers noted. It can produce signals that are similar to the "Wow!" signal, but never as strong as the one detected in 1977. While the SETI community continues to wonder about the origins of their most famous signal, it is reassuring that even after nearly five decades, scientists can still find, refine, and draw new conclusions from the data. With these updates and growing knowledge, the signal may still offer more surprises in the future, the researchers concluded. 

MORE STORIES

The data could provide new insights into the comet’s chemical makeup and physical features as it zooms through our system.
3 hours ago
Astronomers estimate that the planet is about 5 million years old and is similar in size to Jupiter.
1 day ago
New studies suggest that collapsing gas clouds in the early universe may have also formed lower-mass stars.
1 day ago
A recent study proposes that a computational technique known as numerical relativity could be the key to unraveling some of the universe's most profound mysteries.
2 days ago
To determine if a massive collision could have created Jupiter's dilute core, researchers from Durham University used advanced supercomputer simulations of planetary impacts.
4 days ago
Rising carbon dioxide levels in Earth's atmosphere may dramatically alter the impact of future solar superstorms.
5 days ago
By merging X-ray and radio data, astronomers have produced a new image of the MSH 15-52 nebula that is providing fresh insights into its unique shape.
6 days ago
A study chronicles the dramatic changes of the Spirograph Nebula (IC 418), a cloud of gas and dust located about 4,000 light-years away.
6 days ago
New evidence about the Light Mantle, a distinctive bright streak on the Moon, has been uncovered in a recent study of a sample from the Apollo 17 mission.
7 days ago
Roughly two billion years after the Big Bang, the Cosmic Noon saw galaxies become intensely active, with star formation rates 10 to 100 times higher than today.
Aug 19, 2025