What came before the Big Bang? New simulations offer a glimpse into the origins of the universe

A recent study proposes that a computational technique known as numerical relativity could be the key to unraveling some of the universe's most profound mysteries.
PUBLISHED AUG 26, 2025
Representation of the formation of a star with the accretion disk composed of gas and dust revolving around it (Representative Cover Image Source: Getty | Daniel Rocal - PHOTOGRAPHY)
Representation of the formation of a star with the accretion disk composed of gas and dust revolving around it (Representative Cover Image Source: Getty | Daniel Rocal - PHOTOGRAPHY)

A new approach using advanced computer simulations may finally allow scientists to explore what happened before the Big Bang. While cosmologists have long considered the question, "What came before?" to be unanswerable, a groundbreaking paper by researchers from King's College London, Queen Mary University of London, and Oxford University suggests a new path forward, as per Phys.org

Complex computational methods could solve cosmic mysteries (Image Source: Gabriel Fitzpatrick | FQxI)
Complex computational methods could solve cosmic mysteries (Image Source: Gabriel Fitzpatrick | FQxI)

Published in Living Reviews in Relativity, the study proposes that a computational technique called numerical relativity could be the key to solving some of the universe’s most profound mysteries. This method uses complex simulations to approximate solutions to Einstein's equations in extreme scenarios where traditional methods fail. The standard model of cosmology runs into a wall when faced with the Big Bang singularity, a point of infinite density and temperature where the laws of physics break down. In these extreme conditions, the simplifying assumptions typically used to solve Einstein's equations no longer hold, leaving physicists unable to determine what came before.

Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)
Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)

One of these key assumptions is that the universe is homogeneous and isotropic (looking the same in all directions). While this is a good approximation for the universe we observe today, it may not apply to the moments of the Big Bang itself. Numerical relativity, however, can handle these radically different initial conditions, offering a way to move "beyond the lamppost," as study co-author Eugene Lim puts it, into the unexplored "dark" regions of cosmic history. Numerical relativity was originally developed to model the gravitational waves produced by colliding black holes, a problem too complex to solve with pen and paper alone. The technique gained prominence with the development of the LIGO experiment, and its successful application in 2005 paved the way for its use on other puzzles.

Now, researchers believe it can be applied to fundamental questions about the cosmos, including the mystery of cosmic inflation. This period of rapid, early-universe expansion helps explain why the universe is so uniform today. However, the models used to study inflation still rely on the very assumptions of uniformity that inflation itself is meant to explain.

Around 13.8 billion years ago, the universe expanded faster than the speed of light for a fraction of a second, a period called cosmic inflation (Image Source: NASA)
Around 13.8 billion years ago, the universe expanded faster than the speed of light for a fraction of a second, a period called cosmic inflation (Image Source: NASA)

Numerical relativity could allow physicists to test scenarios where inflation begins from a less uniform state. The research suggests numerical relativity could help verify other major theories. It might predict the existence of hypothetical "cosmic strings" or even detect "bruises" in the sky, evidence of our universe having collided with a neighboring one, which would support the multiverse theory. Furthermore, it could provide a way to test the theory of a cyclic universe, which goes through repeated "bounces" from old universes into new ones. This is a very difficult problem to solve analytically because, as Lim points out, "Bouncing universes are an excellent example, because they reach strong gravity where you can't rely on your symmetries." As supercomputing technology continues to advance, so too will the power of these simulations. The authors hope their paper will encourage researchers across different fields to adopt numerical relativity, bridging the gap between cosmology and computational physics to solve some of the universe's most enduring questions.

MORE STORIES

Dark matter is an invisible, enigmatic substance that makes up about 85% of the universe's total mass yet remains undetectable because it does not interact with light.
12 hours ago
New satellite data confirms that the South Atlantic Anomaly, a region of weakened magnetic field, has expanded since 2014 by an area equivalent to nearly half of continental Europe.
17 hours ago
The intricate magnetic lifecycle of Iota Horologii (ι Hor), a 600-million-year-old Sun-like star, was successfully mapped by scientists at the Leibniz Institute for Astrophysics Potsdam.
1 day ago
Using ALMA, an international team achieved the most comprehensive mapping of magnetic fields yet, using the ALMA telescope to survey 17 massive star-forming regions.
1 day ago
The study presents a novel technique that utilizes the dark, shadow-like regions in black hole images taken by 'Event Horizon Telescope' to hunt for the invisible material comprising about 85% of all matter.
1 day ago
Researchers argue that 3I/ATLAS, a body roughly seven miles in diameter, is a lithified clastic fragment ripped from a sedimentary basin on a distant exoplanet that may once have been capable of supporting life.
1 day ago
This model predicts that the universe will reach its maximum size in approximately 11 billion years, then rapidly start contracting.
4 days ago
Scientists have long tried to pinpoint the forces that turned a potentially water-rich Mars into the arid world we see today.
4 days ago
Designated SDSS J0715-7334, the newly identified red giant star exhibits the lowest level of metallicity ever recorded.
5 days ago
The merger, officially labeled GW200208_222617, was registered by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European Virgo detector.
5 days ago