What came before the Big Bang? New simulations offer a glimpse into the origins of the universe

A recent study proposes that a computational technique known as numerical relativity could be the key to unraveling some of the universe's most profound mysteries.
PUBLISHED AUG 26, 2025
Representation of the formation of a star with the accretion disk composed of gas and dust revolving around it (Representative Cover Image Source: Getty | Daniel Rocal - PHOTOGRAPHY)
Representation of the formation of a star with the accretion disk composed of gas and dust revolving around it (Representative Cover Image Source: Getty | Daniel Rocal - PHOTOGRAPHY)

A new approach using advanced computer simulations may finally allow scientists to explore what happened before the Big Bang. While cosmologists have long considered the question, "What came before?" to be unanswerable, a groundbreaking paper by researchers from King's College London, Queen Mary University of London, and Oxford University suggests a new path forward, as per Phys.org

Complex computational methods could solve cosmic mysteries (Image Source: Gabriel Fitzpatrick | FQxI)
Complex computational methods could solve cosmic mysteries (Image Source: Gabriel Fitzpatrick | FQxI)

Published in Living Reviews in Relativity, the study proposes that a computational technique called numerical relativity could be the key to solving some of the universe’s most profound mysteries. This method uses complex simulations to approximate solutions to Einstein's equations in extreme scenarios where traditional methods fail. The standard model of cosmology runs into a wall when faced with the Big Bang singularity, a point of infinite density and temperature where the laws of physics break down. In these extreme conditions, the simplifying assumptions typically used to solve Einstein's equations no longer hold, leaving physicists unable to determine what came before.

Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)
Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)

One of these key assumptions is that the universe is homogeneous and isotropic (looking the same in all directions). While this is a good approximation for the universe we observe today, it may not apply to the moments of the Big Bang itself. Numerical relativity, however, can handle these radically different initial conditions, offering a way to move "beyond the lamppost," as study co-author Eugene Lim puts it, into the unexplored "dark" regions of cosmic history. Numerical relativity was originally developed to model the gravitational waves produced by colliding black holes, a problem too complex to solve with pen and paper alone. The technique gained prominence with the development of the LIGO experiment, and its successful application in 2005 paved the way for its use on other puzzles.

Now, researchers believe it can be applied to fundamental questions about the cosmos, including the mystery of cosmic inflation. This period of rapid, early-universe expansion helps explain why the universe is so uniform today. However, the models used to study inflation still rely on the very assumptions of uniformity that inflation itself is meant to explain.

Around 13.8 billion years ago, the universe expanded faster than the speed of light for a fraction of a second, a period called cosmic inflation (Image Source: NASA)
Around 13.8 billion years ago, the universe expanded faster than the speed of light for a fraction of a second, a period called cosmic inflation (Image Source: NASA)

Numerical relativity could allow physicists to test scenarios where inflation begins from a less uniform state. The research suggests numerical relativity could help verify other major theories. It might predict the existence of hypothetical "cosmic strings" or even detect "bruises" in the sky, evidence of our universe having collided with a neighboring one, which would support the multiverse theory. Furthermore, it could provide a way to test the theory of a cyclic universe, which goes through repeated "bounces" from old universes into new ones. This is a very difficult problem to solve analytically because, as Lim points out, "Bouncing universes are an excellent example, because they reach strong gravity where you can't rely on your symmetries." As supercomputing technology continues to advance, so too will the power of these simulations. The authors hope their paper will encourage researchers across different fields to adopt numerical relativity, bridging the gap between cosmology and computational physics to solve some of the universe's most enduring questions.

MORE STORIES

Sunspot AR3474 detonated with an X1.8 solar flare on November 4, sending an ultraviolet wave silencing South America's shortwave radio communications.
3 hours ago
Observations were maintained using imagery from solar imagers on the STEREO-A, SOHO, and GOES-19 missions near the Sun.
2 days ago
PUNCH satellites secured the initial images of the comet, which had just emerged from behind the Sun.
2 days ago
Four weeks after its acquisition on October 2–3, 2025, the vital MRO HiRISE data remains inaccessible to researchers.
2 days ago
JPL navigation engineer Dr. Davide Farnocchia compiled the data that captured the phenomenon as the comet reached perihelion.
5 days ago
NASA, on the other hand, continues to assert that 3I/ATLAS is a comet of natural origin.
6 days ago
The T Coronae Borealis (T CrB) star system is a recurrent nova known for its predictable, massive explosions.
6 days ago
Wormholes, conceptual tunnels slicing through spacetime, offer a theoretical shortcut between two distant cosmic points.
6 days ago
The highly anticipated interstellar comet is currently invisible from Earth and completely hidden by the Sun's glare.
6 days ago
The V Sge system features a massive star being intensely cannibalized by a dense stellar remnant, likely a white dwarf or a similar Wolf-Rayet star.
7 days ago