Astronauts
Astronomy
Constellation
Deep Sky Objects
Moon
Stargazing
Telescope
About Us Contact Us Privacy Policy Accuracy & Corrections Terms & Condition
COPYRIGHT. All contents of on the site comporting the Starlust branding are Copyright 2019. All rights reserved.
STARLUST.ORG / DEEP SKY OBJECTS

NASA data helps scientists discover possible source of gold in space

The scienctists used NASA clues to form a link between Magnetar bursts and gold's cosmic origins.
PUBLISHED MAY 8, 2025
(L) The NASA Logo sign at Kennedy Space Center Visitor Complex on August 11, 2023, in Florida. (R) A row of gold ingots in Russia.  (Representative Cover Image Source: Getty| (L) Photo by Dominik Bindl (R) Andrey Rudakov)
(L) The NASA Logo sign at Kennedy Space Center Visitor Complex on August 11, 2023, in Florida. (R) A row of gold ingots in Russia. (Representative Cover Image Source: Getty| (L) Photo by Dominik Bindl (R) Andrey Rudakov)

For decades, scientists have made long-term efforts to solve the mystery of how elements heavier than iron, including gold and platinum, were first created and scattered through the universe. But new data from NASA has now given us significant insights into the cosmos origins of gold that we never knew, as revealed by CNN

MERRITT ISLAND, FLORIDA - AUGUST 11: The NASA Logo sign at Kennedy Space Center Visitor Complex on a sunny day on August 11, 2023 in Merritt Island, Florida. (Photo by Dominik Bindl/Getty Images)
MERRITT ISLAND, FLORIDA - AUGUST 11: The NASA Logo sign at Kennedy Space Center Visitor Complex on a sunny day on August 11, 2023 in Merritt Island, Florida. (Photo by Dominik Bindl/Getty Images)

New research based on the signal detected and analysed by NASA points towards a clue: "Magnetars" or highly magnetized neutron stars. Scientists believe that lighter elements like helium, hydrogen, and even lithium existed soon after the Big Bang created the universe 13.8 billion years ago. And when massive stars exploded, the heat and pressure formed heavier elements like iron. In its scattered form, iron got mixed into interstellar gas clouds, which form planets and stars. Astrophysicists, however, have questioned how there has been a widespread distribution of gold despite it being heavier than iron throughout the universe.  A man cleans a gold bar after smelting it from recycled gold jewellery on April 17, 2025 in Istanbul, Turkey.  (Photo by Chris McGrath/Getty Images)

A man cleans a gold bar after smelting it from recycled gold jewellery on April 17, 2025 in Istanbul, Turkey. (Representative Image Source: Getty Images | Photo by Chris McGrath)

Astrophysicist Eric Burns, an assistant professor and astrophysicist at Louisiana State University in Baton Rouge, stated, "It's answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten," as per Science Alert. On the other hand, Anirudh Patel, lead author of the study published Tuesday in The Astrophysical Journal Letters and a doctoral student of physics at Columbia University in New York City, in a statement, said, “It’s a fun puzzle that hasn’t actually been solved,” according to CNN.

Back in 2017, a collision between two neutron stars was observed by astronomers, and gravitational waves were created by this cataclysmic clash. This collision event, known as a "Kilonova," created heavy elements like gold, platinum, and lead. According to study co-author Eric Burns, it is thought that the majority of the neutron star mergers happened in the last few billion years. However, Burns explained that data collected two decades ago from NASA and European Space Agency telescopes previously thought to be unsolvable indicate that energetic outbursts from magnetars formed in the universe's early years might have contributed to gold's creation.

A miner handles a piece of raw platinum ore in South Africa. (Photographer: Waldo Swiegers/Bloomberg)
A miner handles a piece of raw platinum ore in South Africa. (Representative Image Source: Getty Images | Photo by Waldo Swiegers/Bloomberg)

Intrigued by the potential link between magnetars and heavy element formation, the research team initially looked for evidence in visible and even ultraviolet light. Nonetheless, Burns also looked into whether these flares produced detectable gamma rays. During the analysis, he examined the gamma-ray data from a large magnetar flare in December 2004, recorded by the now-defunct INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission, as reported by CNN. Though astronomers had recognized the signal, its relevance remained cryptic.

Close-up of graphite ore. Photographer: Christinne Muschi/Bloomberg
Close-up of graphite ore. (Representative Image Source: Getty Images | Photo by Christinne Muschi/Bloomberg)

Interestingly, the team’s 2004 data matched almost flawlessly with Metzger’s model: a gamma-ray signature produced from the development and subsequent expulsion of heavy elements would look like a magnetar flare. Data collected from NASA's decommissioned Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Wind satellite also corroborated the team's findings. Burns remarked that this substantial contribution came from decades of sustained federally funded research.

A breathtaking image of a spiral galaxy in the depths of space, featuring a bright, white core surrounded by a swirling expanse of blue and purple hues. (Representative Photo by adventtr/ Getty Images)
A breathtaking image of a spiral galaxy in the depths of space, featuring a bright, white core surrounded by a swirling expanse of blue and purple hues. (Representative Photo by adventtr/ Getty Images)

Patel recalled the group’s thrill, mentioning that they did not know the corresponding signal was present in the 2004 datasets when building their model in December 2024. He said, “It's very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion (over) the course of our galaxy’s history.” In addition to that, Patel shared some light on NASA's Compton Spectrometer and Imager mission, or COSI, set to launch in 2027, which might build on the study's results. This wide-field gamma-ray telescope aims to watch giant magnetar flares and spot elements they create. The telescope could assist astronomers in looking for other possible sources of heavy elements throughout the universe, as per CNN.

MORE ON Starlust
This research directly challenges existing theories about how these cosmic objects generate high-energy radiation.
8 hours ago
Researchers using Gaia data detected a subtle 'wobble' in the star's movement, a gravitational sign of a hidden companion that was initially dismissed.
1 day ago
On May 3, 2024, the Chang'e-6 probe launched and successfully gathered 1,935.3 grams of samples from the Moon's South Pole-Aitken (SPA) Basin.
3 days ago
The groundbreaking discovery involves fluvial sinuous ridges, or inverted channels, found mainly in Noachis Terra, a less-studied part of Mars' southern highlands.
3 days ago
Renowned for their swift, bright meteors and luminous trails, the Perseids are considered one of the most anticipated celestial events.
3 days ago
On July 20, the crescent moon will approach within a degree of the Pleiades star cluster, also known as the Seven Sisters, creating a stunning visual.
5 days ago
The pioneering project is set to transform our understanding of the Sun's mysterious interior.
6 days ago
Some theories suggest that our sun was in a similar state before the planets were all formed.
Jul 6, 2025
Discovered on July 1, the celestial body 3I/ATLAS is currently approaching Earth from the direction of the constellation Sagittarius.
Jul 6, 2025
Historically revered as Zeus's powerful eagle, bearing lightning and messages, this celestial constellation reaches its highest point in the sky during July and August.
Jul 6, 2025
With its unparalleled infrared capabilities, Webb now accomplishes what was once impossible, transforming our view of the cosmos from distant galaxies to our solar system.
Jul 5, 2025
An autonomous docking for the Progress 92 is anticipated around 5:27 p.m. EDT on Saturday, July 5.
Jul 4, 2025
This lift-off, from Kennedy Space Center's historic Launch Complex 39A (LC-39A), marked yet another crucial orbital mission for SpaceX.
Jul 2, 2025
The advanced LOFAR radio telescope enabled scientists to detect a massive cloud of high-energy particles around a galaxy cluster whose light traveled 10 billion years to Earth.
Jul 1, 2025
The new image specifically highlights the eastern reaches of Arcadia Planitia, a crucial area northwest of the massive Tharsis volcanic province.
Jun 30, 2025
The spiral galaxy UGC 11397, in the constellation Lyra, is home to a supermassive black hole aggressively consuming material at its core.
Jun 30, 2025
The New Shepard program's 33rd overall flight, a suborbital journey lasting approximately 10 minutes, lifted off from Launch Site One in West Texas at 9:39 a.m. CDT.
Jun 30, 2025
The dwarf galaxy NGC 4449, just 12.5 million light-years away in the constellation Canes Venatici, is a standout 'starburst galaxy.'
Jun 29, 2025
The new image combines data from across the electromagnetic spectrum, giving astronomers a complete picture of Andromeda's complex structure.
Jun 27, 2025
The NASA/ESA Hubble Space Telescope recently captured an image of the spiral galaxy IC 758, located 60 million light-years away in the constellation Ursa Major.
Jun 22, 2025