NASA’s next big solar mission clears key hurdle, moves one step closer to its 2027 launch

Experts from NASA and the industry oversaw the review process at the Lockheed Martin Space Systems Advanced Technology Center in California.
PUBLISHED MAY 30, 2025
A dark line snaked across the lower half of the sun on Feb.10, 2015, as seen in this image from NASA's Solar Dynamics Observatory, or SDO. (Cover Image Source: NASA Image and Video Library | NASA)
A dark line snaked across the lower half of the sun on Feb.10, 2015, as seen in this image from NASA's Solar Dynamics Observatory, or SDO. (Cover Image Source: NASA Image and Video Library | NASA)

NASA's MUSE (Multi-slit Solar Explorer) mission completed its critical design review (CDR) on May 9. This major milestone, which brings the mission closer to its 2027 launch, involved a comprehensive and detailed examination of every subsystem and interconnecting harness of the observatory. The review was conducted at Lockheed Martin Space Systems Advanced Technology Center in Palo Alto, California, with a team of subject matter experts from both NASA and the industry overseeing the process, reported NASA

An illustration of MUSE that will study solar flares, coronal mass ejections, and the Sun’s outer atmosphere, the corona (Representative Image Source: NASA | NASA)
An illustration of MUSE that will study solar flares, coronal mass ejections, and the Sun’s outer atmosphere, the corona (Representative Image Source: NASA | NASA)

Bart De Pontieu, MUSE principal investigator and solar physicist at the Lockheed Martin Solar and Astrophysics Laboratory, shared his positive outlook: “We are excited to have passed this crucial milestone. We look forward to the building, integration, and testing of this important science mission.” MUSE aims to unlock secrets of the Sun's corona, its dynamic and superheated outer atmosphere, by capturing unique high-resolution images and spectral data. A long-standing scientific puzzle is the extreme temperature of this region compared to the solar surface, as well as the underlying causes of its explosive activities, such as solar flares and coronal mass ejections. Furthermore, through its study of how the solar atmosphere destabilizes and changes during these events, MUSE will provide crucial contributions to our knowledge of space weather events. The findings from MUSE have the potential to vastly improve our protective measures for astronauts, Earth-based electronics, and spacecraft operating throughout the solar system. 

3D Rendering of Sun in space (Representative Image Source: Unsplash | 3dparadise
An image of a 3D rendered Sun in space (Representative Image Source: Unsplash | 3dparadise

Led by Lockheed Martin Solar and Astrophysics Laboratory, the MUSE mission is a collaborative effort managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This management is conducted for the Heliophysics Division of NASA’s Science Mission Directorate. The construction of the MUSE instrument and spacecraft is a joint undertaking by Lockheed Martin Advanced Technology Center and its partner institutions, with the University of California, Berkeley, providing the vital mission operations center. Additionally, the MUSE mission benefits from substantial international contributors, including support from the Norwegian Space Agency, the Italian Space Agency, the German Space Agency, as well as the Max Planck Institute for Solar System Research.

MUSE is equipped with two high-tech instruments that will allow it to resolve details as small as 250 kilometers within the Sun's hot atmosphere, a resolution unmatched by any other NASA solar mission. A key component is its one-of-a-kind multi-slit spectrograph, which is central to MUSE's unique capabilities. Because spacecraft cannot fly into low altitudes where solar eruptions originate, scientists use remote sensing to diagnose conditions in this region. The spectrograph breaks down light into various wavelengths, allowing researchers to precisely measure distant physical properties such as the temperature, velocity, and turbulent movements of the solar gas emitting the light.

The first two of six new solar arrays for the International Space Station have been loaded into Dragon’s unpressurized spacecraft trunk (Image Source: NASA Image and Video Library | NASA)
The first two of six new solar arrays for the International Space Station have been loaded into Dragon’s unpressurized spacecraft trunk (Image Source: NASA Image and Video Library | NASA)

As De Pontieu explains, “These are the kinds of measurements we really need to pin down the physical mechanisms of what drives these eruptions and explosions.” Compared to older single-slit spectrographs, MUSE's multi-slit technology can gather data up to 100 times faster, providing an unparalleled look at the solar corona, coronal mass ejections, and solar flares. An accompanying imager will capture extreme ultraviolet light, further enhancing our understanding of the solar atmosphere's temperatures, structure and dynamics. 

MORE STORIES

On February 13, 2023, the KM3NeT underwater telescope registered the high-energy 'ghost particle.'
1 day ago
These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
6 days ago
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
6 days ago
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
Sep 26, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
Sep 24, 2025
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
Sep 22, 2025
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
Sep 19, 2025
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025