Chang'e-6 samples reveal ancient volcanoes rocked the Moon’s far side for a billion years, surprising scientists

On May 3, 2024, the Chang'e-6 probe launched and successfully gathered 1,935.3 grams of samples from the Moon's South Pole-Aitken (SPA) Basin.
UPDATED JUL 25, 2025
China's Chang'e-6 mission lunar samples, collected from the far side of the moon, are showcased at the 15th China International Aviation and Aerospace Exhibition. (Cover Image Source: China National Space Administration)
China's Chang'e-6 mission lunar samples, collected from the far side of the moon, are showcased at the 15th China International Aviation and Aerospace Exhibition. (Cover Image Source: China National Space Administration)

Revolutionary findings from China's Chang'e-6 lunar mission are rewriting our understanding of the Moon's enigmatic farside. This previously mysterious region, which has long been a source of scientific intrigue due to its stark geological differences from the Earth-facing nearside, is now yielding its secret thanks to the striking sample return. Crucially, analysis of these samples reveals how ancient volcanoes rocked the Moon's far side for a billion years, significantly altering prior timelines of lunar activity, according to the Chinese Academy of Sciences

This image taken from video animation at Beijing Aerospace Control Center (BACC) on June 2, 2024 shows the lander-ascender combination of Chang'e-6 probe landing on the far side of the moon (Image Source: )
This image, taken from a video animation at Beijing Aerospace Control Center (BACC) on June 2, 2024, shows the lander-ascender combination of the Chang'e-6 probe landing on the far side of the moon. (Image Source: China National Space Administration)

The mission, which successfully brought back nearly two kilograms of lunar material in June 2024, has provided critical new insights into the farside's complex geological and thermal history. The Chang'e-6 probe, launched on May 3, 2024, meticulously collected 4.26 pounds of samples from within the South Pole-Aitken (SPA) Basin. This monumental impact structure, the Moon's most ancient and extensive, spans an astonishing 1553.5 miles in diameter. The invaluable lunar material made its successful return to Earth on June 5, 2024. For decades, the profound geological and thermal consequences of the immense impact event that formed the SPA Basin approximately 4.25 billion years ago remained one of planetary science's most significant unresolved questions. The recent in-depth analyses of these carefully retrieved samples have now begun to shine light on these long-standing puzzles.

The Chang'e 5 lunar probe completes the vertical transport on 17th November 2020 in Wenchang, Hainan, China (Image Source: Getty | TPG)
The Chang'e 5 lunar probe completes the vertical transport on 17th November 2020 in Wenchang, Hainan, China. (Image Source: Getty Images | Photo by TPG)

Leading research teams from prominent Chinese Academy of Sciences (CAS) institutions, including the Institute of Geology and Geophysics (IGG) and the National Astronomical Observatories (NAOC), in collaboration with Nanjing University and other academic partners, have reported four pivotal discoveries based on the Chang'e-6 samples. These groundbreaking findings were prominently featured as four distinct cover articles in the prestigious journal Nature, underscoring their profound scientific importance. Professor WU Fuyuan, a distinguished CAS member and IGC researcher, highlighted that these four Nature publications collectively represent the first comprehensive revelation of the extensive geological ramifications stemming from the colossal SPA impact. 

In this image, a NASA astronaut is on the Moon collecting lunar samples using a rake (Representative Image Source: NASA)
In this image, a NASA astronaut is on the Moon collecting lunar samples using a rake. (Image Source: NASA)

Key discoveries from the Chang'e-6 samples have fundamentally altered existing lunar models. Scientists identified extended volcanic activity, revealing two distinct periods of volcanism on the lunar farside, occurring approximately 4.2 billion and 2.8 billion years ago. This pushes back the known timeline of farside volcanism, stating that it persisted for 1.4 billion years. Furthermore, measurements of paleomagnetic intensities in basalt fragments suggest a surprising ricochet in the moon's magnetic field around 2.8 billion years ago. This challenges the long-held theory of a steady decline in the lunar dynamo, instead pointing to an episodic and more dynamic magnetic history for Earth's natural satellite. 

The samples also provided evidence for asymmetrical water distribution within the Moon's interior. Analysis indicated that the farside mantle contains a notably lower water content compared to the nearside mantle, highlighting an uneven distribution of volatile elements within the lunar interior and further contributing to the Moon's inherent asymmetry. Initial scientific findings, published by NAOC and its collaborators, provided comprehensive, detailed insights into the samples' physical, mineralogical, and geochemical characteristics, as mentioned by the outlet

Subsequently, the Guangzhou Institute of Geochemistry at CAS independently confirmed the 2.8 billion-year-old farside volcanic activity, associating it directly with a highly depleted mantle source. Concurrently, the IGG precisely dated the SPA formation event to 4.25 billion years ago, establishing an indispensable chronological reference point for broader studies on early Solar System impacts. These pivotal revelations not only offer striking insights into the complex evolution of the Moon's farside but also unequivocally underscore the transformative impact of the Chang'e-6 mission, effectively opening vast new avenues for understanding the fundamental processes of planetary formation and evolution across the cosmos. 

MORE STORIES

The space agency found the aftermath of massive impacts beneath the planet’s surface using the recordings of the InSight lander.
14 hours ago
The knowledge of how planets formed might now be getting a massive twist due to ALMA's new findings.
14 hours ago
The data could provide new insights into the comet’s chemical makeup and physical features as it zooms through our system.
1 day ago
Since it was discovered in 1977, the 'Wow!' signal has been one of the most mysterious radio signals in SETI history.
1 day ago
Astronomers estimate that the planet is about 5 million years old and is similar in size to Jupiter.
2 days ago
New studies suggest that collapsing gas clouds in the early universe may have also formed lower-mass stars.
2 days ago
A recent study proposes that a computational technique known as numerical relativity could be the key to unraveling some of the universe's most profound mysteries.
3 days ago
To determine if a massive collision could have created Jupiter's dilute core, researchers from Durham University used advanced supercomputer simulations of planetary impacts.
5 days ago
Rising carbon dioxide levels in Earth's atmosphere may dramatically alter the impact of future solar superstorms.
6 days ago
By merging X-ray and radio data, astronomers have produced a new image of the MSH 15-52 nebula that is providing fresh insights into its unique shape.
7 days ago