Astronomers surprised after spotting 'Eye of Sauron' in deep space: 'Never seen anything like it'

Using 15 years of ultra-precise radio observations from the Very Long Baseline Ar-ray, researchers reconstructed a deep image of the blazar jet and 'it looked stunning.'
PUBLISHED AUG 14, 2025
Taken with the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope, the picture shows the Fomalhaut star that is 34.5 billion kilometres across. (Representative Cover Image Source: NASA/ESA Hubble Space Telescope, edited by Starlust sta
Taken with the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope, the picture shows the Fomalhaut star that is 34.5 billion kilometres across. (Representative Cover Image Source: NASA/ESA Hubble Space Telescope, edited by Starlust sta

Astronomers have captured a remarkable image of a blazar's jet aimed directly at Earth, a discovery that has solved the long-standing mystery of a distant celestial object's intense high-energy emissions. The international team's findings, published in Astronomy & Astrophysics Letters, reveal a structure resembling the mythical "Eye of Sauron," which has provided a critical breakthrough in understanding how blazars produce powerful gamma rays and neutrinos, as per the researchers at the Max Planck Institute for Radio Astronomy

The “Eye of Sauron” — a striking image of the plasma jet in the blazar PKS 1424+240, seen head-on (Image Source: )
The “Eye of Sauron” — a striking image of the plasma jet in the blazar PKS 1424+240, seen head-on (Image Source: Max Planck Institute for Radio Astronomy |  Y.Y. Kovalev et al)

A blazar is a type of active galactic nucleus (AGN), powered by a supermassive black hole. It launches a jet of plasma moving at nearly the speed of light. What makes a blazar unique is its orientation: one of the jets is pointed almost directly toward Earth. This cosmic alignment makes blazars appear exceptionally bright across the electromagnetic spectrum, giving scientists a rare opportunity to study extreme physical processes, such as particle acceleration, in a natural laboratory. "When we reconstructed the image, it looked absolutely stunning,” said Yuri Kovalev, lead author of the study and Principal Investigator of the ERC-funded MuSES project at the Max Planck Institute for Radio Astronomy (MPIfR). He added, “We have never seen anything quite like it — a near-perfect toroidal magnetic field with a jet, pointing straight at us.”

The blazar, known as PKS 1424+240, had baffled scientists for years. Located billions of light-years away, it was one of the brightest known sources of high-energy gamma rays and neutrinos. However, its radio jet appeared to move at an unusually slow pace, seemingly contradicting the expectation that such extreme emissions are powered only by the fastest cosmic jets

Looking inside the plasma jet cone of the blazar PKS 1424+240 with a radio telescope of the Very Long Baseline Array (VLBA) (Image Source: )
Looking inside the plasma jet cone of the blazar PKS 1424+240 with a radio telescope of the Very Long Baseline Array (VLBA) (Image Source: Max Planck Institute for Radio Astronomy | Y.Y. Kovalev et al )

Utilizing 15 years of data from the Very Long Baseline Array (VLBA), researchers were able to create an exceptionally detailed image of the jet. The reconstructed image showed a unique, ring-like magnetic field structure with the jet pointed almost perfectly in Earth's direction. The direct alignment, according to the researchers, explains the blazar's perplexing behaviour. “This alignment causes a boost in brightness by a factor of 30 or more,” co-author Jack Livingston at MPIfR explained. “At the same time, the jet appears to move slowly due to projection effects — a classic optical illusion.”

In northern California sits one of the ten identical antennas of the Very Long Baseline Array (Image Source: NRAO/AUI/NSF)
In northern California sits one of the ten identical antennas of the Very Long Baseline Array (Image Source: NRAO/AUI/NSF)

This rare line of sight allowed scientists to peer directly into the heart of the blazar's jet, revealing a toroidal or helical magnetic field. This structure is believed to be essential for launching and accelerating particles to extreme energies, including the protons that generate the observed high-energy neutrinos. The discovery confirms that the supermassive black hole at the core of these active galaxies is not only capable of accelerating electrons but also protons. 

The finding is considered a major success for the MOJAVE program, which uses Very Long Baseline Interferometry (VLBI) to monitor jets in active galaxies with striking resolution. This technique, which links radio telescopes across the globe, allows astronomers to create a virtual telescope the size of Earth. The study marks a significant advance in multimessenger astronomy, solidifying the connection between relativistic jets, high-energy neutrinos, and the crucial role of magnetic fields in these cosmic accelerators. 

Another famous example of a blazar is OJ 287, a highly active galactic core located about four billion light-years away. It is so bright that it can even be observed with large amateur telescopes, with a history of observations dating back to the late 1800s. These historical records reveal a peculiar pattern: the galaxy appears to brighten every 12 years. In 2014, a new theory was proposed to explain this recurring phenomenon. According to this model, the periodic brightening is caused by a second, less massive black hole orbiting the primary one. The second black hole’s elongated orbit brings it close enough to the main black hole to cause a surge in brightness only once every 12 years. 

MORE STORIES

The rocky exoplanet GJ 251 c, estimated to be nearly four times the mass of Earth, has been classified as a 'super-Earth.'
2 days ago
Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
Oct 14, 2025
An international research collective has serendipitously discovered an ultra-luminous infrared galaxy (ULIRG), a system intensely forming stars, hidden behind the distant and well-known Cloverleaf quasar, H1413+117.
Oct 13, 2025
Researchers focused on the quasar OJ287, an intensely bright galactic core whose erratic light patterns had long suggested the presence of a pair of orbiting black holes.
Oct 10, 2025
The asteroid's orbit is highly elliptical (stretched-out), causing it to take approximately 2.65 years (967 days) to complete one trip around the Sun.
Oct 9, 2025
On February 13, 2023, the KM3NeT underwater telescope registered the high-energy 'ghost particle.'
Oct 8, 2025
These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
Oct 3, 2025
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
Oct 3, 2025
For the first time ever, an international research team has produced a time-lapse video capturing the dynamic action inside a planet-forming region.
Sep 26, 2025
Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
Sep 24, 2025