Astronomers surprised after spotting 'Eye of Sauron' in deep space: 'Never seen anything like it'

Using 15 years of ultra-precise radio observations from the Very Long Baseline Ar-ray, researchers reconstructed a deep image of the blazar jet and 'it looked stunning.'
PUBLISHED AUG 14, 2025
Taken with the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope, the picture shows the Fomalhaut star that is 34.5 billion kilometres across. (Representative Cover Image Source: NASA/ESA Hubble Space Telescope, edited by Starlust sta
Taken with the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope, the picture shows the Fomalhaut star that is 34.5 billion kilometres across. (Representative Cover Image Source: NASA/ESA Hubble Space Telescope, edited by Starlust sta

Astronomers have captured a remarkable image of a blazar's jet aimed directly at Earth, a discovery that has solved the long-standing mystery of a distant celestial object's intense high-energy emissions. The international team's findings, published in Astronomy & Astrophysics Letters, reveal a structure resembling the mythical "Eye of Sauron," which has provided a critical breakthrough in understanding how blazars produce powerful gamma rays and neutrinos, as per the researchers at the Max Planck Institute for Radio Astronomy

The “Eye of Sauron” — a striking image of the plasma jet in the blazar PKS 1424+240, seen head-on (Image Source: )
The “Eye of Sauron” — a striking image of the plasma jet in the blazar PKS 1424+240, seen head-on (Image Source: Max Planck Institute for Radio Astronomy |  Y.Y. Kovalev et al)

A blazar is a type of active galactic nucleus (AGN), powered by a supermassive black hole. It launches a jet of plasma moving at nearly the speed of light. What makes a blazar unique is its orientation: one of the jets is pointed almost directly toward Earth. This cosmic alignment makes blazars appear exceptionally bright across the electromagnetic spectrum, giving scientists a rare opportunity to study extreme physical processes, such as particle acceleration, in a natural laboratory. "When we reconstructed the image, it looked absolutely stunning,” said Yuri Kovalev, lead author of the study and Principal Investigator of the ERC-funded MuSES project at the Max Planck Institute for Radio Astronomy (MPIfR). He added, “We have never seen anything quite like it — a near-perfect toroidal magnetic field with a jet, pointing straight at us.”

The blazar, known as PKS 1424+240, had baffled scientists for years. Located billions of light-years away, it was one of the brightest known sources of high-energy gamma rays and neutrinos. However, its radio jet appeared to move at an unusually slow pace, seemingly contradicting the expectation that such extreme emissions are powered only by the fastest cosmic jets

Looking inside the plasma jet cone of the blazar PKS 1424+240 with a radio telescope of the Very Long Baseline Array (VLBA) (Image Source: )
Looking inside the plasma jet cone of the blazar PKS 1424+240 with a radio telescope of the Very Long Baseline Array (VLBA) (Image Source: Max Planck Institute for Radio Astronomy | Y.Y. Kovalev et al )

Utilizing 15 years of data from the Very Long Baseline Array (VLBA), researchers were able to create an exceptionally detailed image of the jet. The reconstructed image showed a unique, ring-like magnetic field structure with the jet pointed almost perfectly in Earth's direction. The direct alignment, according to the researchers, explains the blazar's perplexing behaviour. “This alignment causes a boost in brightness by a factor of 30 or more,” co-author Jack Livingston at MPIfR explained. “At the same time, the jet appears to move slowly due to projection effects — a classic optical illusion.”

In northern California sits one of the ten identical antennas of the Very Long Baseline Array (Image Source: NRAO/AUI/NSF)
In northern California sits one of the ten identical antennas of the Very Long Baseline Array (Image Source: NRAO/AUI/NSF)

This rare line of sight allowed scientists to peer directly into the heart of the blazar's jet, revealing a toroidal or helical magnetic field. This structure is believed to be essential for launching and accelerating particles to extreme energies, including the protons that generate the observed high-energy neutrinos. The discovery confirms that the supermassive black hole at the core of these active galaxies is not only capable of accelerating electrons but also protons. 

The finding is considered a major success for the MOJAVE program, which uses Very Long Baseline Interferometry (VLBI) to monitor jets in active galaxies with striking resolution. This technique, which links radio telescopes across the globe, allows astronomers to create a virtual telescope the size of Earth. The study marks a significant advance in multimessenger astronomy, solidifying the connection between relativistic jets, high-energy neutrinos, and the crucial role of magnetic fields in these cosmic accelerators. 

Another famous example of a blazar is OJ 287, a highly active galactic core located about four billion light-years away. It is so bright that it can even be observed with large amateur telescopes, with a history of observations dating back to the late 1800s. These historical records reveal a peculiar pattern: the galaxy appears to brighten every 12 years. In 2014, a new theory was proposed to explain this recurring phenomenon. According to this model, the periodic brightening is caused by a second, less massive black hole orbiting the primary one. The second black hole’s elongated orbit brings it close enough to the main black hole to cause a surge in brightness only once every 12 years. 

MORE STORIES

The findings would help astronomers learn more about the formation and evolution of dwarf galaxies, particularly the ones that have been isolated from their original groups.
7 hours ago
Astronomers have found a newly identified system, unofficially named 'JWST's Quintet,' where at least five galaxies and 17 star-forming clumps are merging.
2 days ago
The satellite found two rocky exoplanets comparable to Earth in size, orbiting a nearby K-type star, as candidates for its mission.
4 days ago
The magnetic fields of the early universe only had enough strength to be compared to the magnetism of neurons in the human brain.
5 days ago
These stellar remnants, capable of traveling over 2,000 kilometers per second, are now believed to be the high-speed survivors of a rare type of supernova explosion.
6 days ago
'This advances our understanding of accretion physics, a field central to unraveling black hole behavior and galaxy evolution,' explained a scientist.
Aug 31, 2025
This new James Webb image focuses on the centre of the Butterfly Nebula and its dusty torus, giving us a view of its complex structure.
Aug 29, 2025
This cosmic web filament is reported to have a thickness of 2.6 to 3.3 million light years.
Aug 27, 2025
Hayabusa2’s Ryugu samples provide insights into Earth’s early water, organic materials, and the beginnings of life.
Aug 26, 2025
According to a new model, the death of stars and their collapse into black holes might be a key mechanism for generating dark energy.
Aug 24, 2025