Astronomers discover smallest dark matter clump ever — yet it has a mass a million times greater than our sun's

Dark matter is an invisible, enigmatic substance that makes up about 85% of the universe's total mass yet remains undetectable because it does not interact with light.
UPDATED OCT 14, 2025
This composite image captured using NASA's Hubble Space Telescope and Chandra X-ray Observatory and the ground-based Giant Magellan Telescope shows the Bullet Cluster, a pair of galaxy clusters that collided (Representative Cover Image Source: NASA)
This composite image captured using NASA's Hubble Space Telescope and Chandra X-ray Observatory and the ground-based Giant Magellan Telescope shows the Bullet Cluster, a pair of galaxy clusters that collided (Representative Cover Image Source: NASA)

An international astronomy team has pinpointed what may be the smallest pure concentration of dark matter ever detected, a crucial finding that strongly supports standard theories of galaxy formation, as per Universe Today



 

The invisible, enigmatic substance known as dark matter constitutes roughly 85% of the universe’s total matter but remains undetectable by conventional means, as it does not interact with light. Its existence is inferred solely through its powerful gravitational effects on visible cosmic structures like galaxies and galaxy clusters. A collaborative team, led by Dr. Devon Powell of the Max Planck Institute for Astrophysics, successfully isolated a minuscule dark matter clump, weighing approximately one million times the mass of our Sun. This object is located a staggering 10 billion light-years from Earth, providing a glimpse into the universe when it was only 6.5 billion years old.

Overlay of the infrared emission (black and white) with the radio emission (colour). The dark, low-mass object is located at the gap in the bright part of the arc on the right-hand side (Image Source: Keck/EVN/GBT/VLBA)
Overlay of the infrared emission (black and white) with the radio emission (colour). The dark, low-mass object is located at the gap in the bright part of the arc on the right-hand side (Image Source: Keck/EVN/GBT/VLBA)

The discovery was facilitated by coordinating radio observatories across continents, from the United States to Europe, to create a virtual, Earth-sized telescope. The researchers leveraged gravitational lensing, a phenomenon predicted by Einstein's Theory of General Relativity, where a massive foreground object warps spacetime, bending the light of objects behind it. While observing a system designated B1938+666, the team identified a subtle "pinch" or distortion within the gravitational arc known as an Einstein ring. This minute deformation could only be attributed to a previously unseen concentration of mass, the dark matter clump, situated between the observatories and the background galaxy. 

The zoom in shows the pinch in the luminous radio arc, where the extra mass from the dark object is gravitationally ‘imaged’ using the sophisticated modeling algorithms of the team (Image Source: Keck/EVN/GBT/VLBA)
The zoom in shows the pinch in the luminous radio arc, where the extra mass from the dark object is gravitationally ‘imaged’ using the sophisticated modeling algorithms of the team (Image Source: Keck/EVN/GBT/VLBA)

As Dr. Powell detailed in the journal Nature Astronomy, the methodology involved using distant galaxies as "backlights" to find the invisible mass through its gravitational "fingerprint." Analyzing the immense data requires developing new computational methods and running them on supercomputers. The team effectively photographed the invisible object using a technique termed "gravitational imaging."

In this computer simulation, we see a region of the universe wherein a low-density “void” (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white) (Cover Image Source: AAS Nova)
In this computer simulation, we see a region of the universe wherein a low-density “void” (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white) (Representative Image Source: AAS Nova)

Crucially, the identification of this tiny dark concentration provides significant validation for the prevailing cold dark matter (CDM) theory of galaxy formation. This theory posits that dark matter is composed of slow-moving particles that began clumping together via gravity in the early universe, forming small structures that eventually merged into the larger galaxies and clusters observed today. The detection of such a small clump supports the prediction that dark matter is not smoothly distributed but aggregates into discrete, hierarchical structures.

Scientists expect similar dark matter clumps to be ubiquitous, filling the halos of all galaxies, including our own Milky Way. The next phase of research will focus on locating more of these structures to determine if their observed numbers continue to align with theoretical models. Future discrepancies could necessitate revisions to current theories on dark matter's fundamental nature.

Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars (Cover Image Source: NASA/JPL-Caltech)
Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars (Image Source: NASA/JPL-Caltech)

The international search for smaller dark matter structures is set to receive a significant boost from NASA's Nancy Grace Roman Space Telescope, scheduled to begin operations in 2027. The telescope is specifically designed to utilize the same technique of gravitational lensing, the distortion of light by massive cosmic objects, a phenomenon predicted by Albert Einstein's Theory of General Relativity, that led to the recent discovery. By precisely measuring how mass warps the fabric of time and space, Roman will provide critical new data, allowing astronomers to investigate the enduring mystery of dark matter's distribution and fundamental properties on an unprecedented scale.

More on Starlust

Black hole shadows could finally help detect the universe’s 'invisible' dark matter, say scientists

Black hole shadows could finally help detect the universe’s 'invisible' dark matter, say scientists

MORE STORIES

After a decade focused on simple 'biosignatures,' researchers are increasingly pivoting the search for alien life toward detecting technological output.
4 hours ago
After the big collision, Theia's traces could be found in the composition of the Earth and the Moon.
9 hours ago
Amateur astronomers Michael Jäger and Gerald Rhemann used a standard 12-inch telescope and a specialized camera to capture the extraordinary color image.
1 day ago
The reason we often imagine the Sun as yellow or orange has to do with the air around us rather than with the Sun itself.
1 day ago
Researchers claim that this could pave the way for basic ecosystems outside of Earth.
4 days ago
The Harvard astrophysicist seems unimpressed with the revelations made by NASA, as he wanted the space agency to answer more questions.
4 days ago
NASA released brand-new images of comet 3I/ATLAS from its array of spacecraft. These are visuals that were previously kept under wraps because of the government shutdown.
4 days ago
Several of NASA's missions captured the interstellar comet from different vantage points.
5 days ago
There has been speculation suggesting that 3I/ATLAS may be alien technology.
5 days ago
NASA prepares to host a live event where they will share the images captured by various telescopes and observatories.
6 days ago