Breakthrough discovery may finally explain why the Sun's outer atmosphere burns hotter than its surface

Using the world's most powerful solar telescope, researchers secured the first direct evidence of tiny, twisting Alfvén waves.
PUBLISHED OCT 27, 2025
A close-up of the Sun showing solar surface activity and corona (Representative Cover Image Source: Getty Images | DrPixels)
A close-up of the Sun showing solar surface activity and corona (Representative Cover Image Source: Getty Images | DrPixels)

An eighty-year scientific quest has culminated in a breakthrough discovery that could finally solve the decades-old mystery of why the Sun's outer atmosphere, the corona, is drastically hotter than its surface, according to Northumbria University.  

Artist’s representation of twisting magnetic waves (inset) revealed for the first time by the NSF Inouye Solar Telescope(Image Source: : NSF/NSO/AURA/J. Williams)
Artist’s representation of twisting magnetic waves (inset) revealed for the first time by the NSF Inouye Solar Telescope(Image Source: : NSF/NSO/AURA/J. Williams)

Using the world's most powerful solar observatory, the NSF Daniel K. Inouye Solar Telescope in Hawaii, a team of international researchers has achieved the first direct observation of the elusive, small-scale torsional Alfvén waves. These persistent, twisting magnetic disturbances were first theorized in the 1940s and are now believed to be the energy source powering the corona's extreme heat.

This visualization presents a range of particle speeds trapped in the minima of the kinetic Alfven wave (Image Source: NASA)
This visualization presents a range of particle speeds trapped in the minima of the kinetic Alfven wave (Image Source: NASA)

While scientists have previously spotted larger, isolated versions of Alfvén waves, often linked to explosive solar flares, this new finding marks the first time the continuously present, tiny twisting type has been directly observed. The Sun's surface simmers at a relatively cool 5,500°C, but the corona soars to millions of degrees, a fundamental puzzle in astrophysics. The discovery, detailed in the journal Nature Astronomy, was spearheaded by Professor Richard Morton of Northumbria University. “This discovery ends a protracted search for these waves that has its origins in the 1940s," said Professor Morton. "We've finally been able to directly observe these torsional motions twisting the magnetic field lines back and forth in the corona."  

An image of the solar flares on the surface of the Sun.
(Representative Image Source: Getty Images | Wasan Prunglampoo.)
An image of the solar flares on the surface of the Sun. (Representative Image Source: Getty Images | Wasan Prunglampoo.)

The observation was made possible by the Inouye Telescope's Cryogenic Near Infrared Spectropolarimeter (Cryo-NIRSP) instrument, the most advanced coronal spectrometer of its kind. The key to the success, however, lay in Professor Morton's development of new analytical techniques. The dominant "swaying" motions of plasma in the corona had long masked the subtle twisting of the Alfvén waves. By mathematically filtering out this larger movement, Morton was able to isolate the signature of the twisting waves using spectroscopic analysis, which detects shifts in plasma moving toward and away from Earth.

NASA's Solar Dynamics Observatory captured this image of an M7.3-class solar flare on Oct. 2, 2014. (Image Source: NASA Image and Video Library | Photo by NASA Goddard)
NASA's Solar Dynamics Observatory captured this image of an M7.3-class solar flare on Oct. 2, 2014. (Image Source: NASA Image and Video Library | Photo by NASA Goddard)

The validation of these long-sought waves is expected to ignite new research into how energy is transferred throughout the Sun's atmosphere, a process critical to understanding space weather. The solar wind, driven by the hot corona, constantly streams particles that can disrupt satellite communications, GPS systems, and power grids on Earth. Researchers believe these Alfvén waves could also be the source of magnetic switchbacks, significant energy-carrying structures previously observed by NASA's Parker Solar Probe. This groundbreaking research, a major international collaboration including institutions in the U.K., China, Belgium, and the U.S., validates theoretical models and provides a real-world test for future efforts to predict and mitigate the effects of space weather. 

A digital illustration of a solar flare hitting the Earth's surface.
(Representative Image Source: Getty Images | Victor Habbick Visions.)
A digital illustration of a solar flare hitting the Earth's surface. (Representative Image Source: Getty Images | Victor Habbick Visions.)

Recently, the telescope also provided its first major insight by capturing the clearest-ever H-alpha images of a powerful solar flare, delivering unprecedented detail into the Sun's magnetic architecture. The observation, detailed in The Astrophysical Journal Letters, showcases the finer structure of the coronal loops and magnetic fields associated with a flare's aftermath. Astronomers used the DKIST to successfully image dark coronal loop strands with remarkable clarity during the decay phase of an intense X1.3-class flare that erupted on August 8, 2024.

A high-resolution image of the flare from the Inouye Solar Telescope.
(Cover Image Source: Getty Images | NSF | NSO | AURA.)
A high-resolution image of the flare from the Inouye Solar Telescope. (Image Source: Getty Images | NSF | NSO | AURA.)

More on Starlust

Triple coronal mass ejections are headed to Earth and could trigger auroras in northern skies

Scientists solve 50-year-old mystery, discover solar flares 6.5 times hotter than expected

MORE STORIES

A pair of massive solar eruptions, known as coronal mass ejections, was detected on December 16 and is currently on a direct collision course with Earth.
2 hours ago
Officially labelled PSR J2322-2650b, this Jupiter-mass planet has been deformed into a bizarre lemon shape by the sheer, crushing gravity of its host star.
5 hours ago
The new candidate, AT2025ulz, initially acted like a kilonova, only to later mystify scientists by morphing into what appeared to be a common supernova.
6 hours ago
The average distance between Earth and the Moon is 384,400 kilometers (about 238,855 miles).
1 day ago
Captured by the Gemini Multi-Object Spectrograph on November 26, 2025, this striking green hue replaces the comet's previously observed reddish color.
2 days ago
'The ice giant classification is oversimplified as Uranus and Neptune are still poorly understood,' said experts.
2 days ago
The discovery is based on observations made during the probe's record-setting dive in December 2024, when it came within a mere 3.8 million miles of the Sun.
4 days ago
University of Rochester researchers have evidence that Earth's magnetic field may have funnelled key elements from our atmosphere to the Moon.
5 days ago
The spider-like feature may offer clues about subsurface liquid water on Europa.
5 days ago
The 17-hour X-ray study, performed in late November 2025, captured a subtle X-ray glow emanating from 3I/ATLAS's core.
6 days ago