NASA’s Parker Solar Probe unveils the closest-ever images to the Sun, taken just 3.8 million miles away

These incredible images are giving scientists vital new information about space weather events that could affect Earth.
UPDATED JUL 21, 2025
NASA’s Parker Solar Probe just released imagery from its closest-ever flyby of the Sun, revealing details in the solar atmosphere that scientists will be studying for years (Cover Image Source: YouTube | NASA Goddard)
NASA’s Parker Solar Probe just released imagery from its closest-ever flyby of the Sun, revealing details in the solar atmosphere that scientists will be studying for years (Cover Image Source: YouTube | NASA Goddard)

NASA's Parker Solar Probe has released unprecedented images captured from within the Sun's atmosphere, marking the closest views ever recorded. These stunning visuals, acquired during a record-setting flyby in late 2024, are providing scientists with critical insights into space weather events that can impact Earth, according to NASA



 

“Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,” stated Nicky Fox, associate administrator for NASA's Science Mission Directorate. “We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.”

NASA’s Parker Solar Probe launched aboard a ULA Delta IV Heavy rocket on August 12, 2018, from Space Launch Complex 37 at Cape Canaveral Air Force (Image Source: NASA)
NASA’s Parker Solar Probe launched aboard a ULA Delta IV Heavy rocket on August 12, 2018, from Space Launch Complex 37 at Cape Canaveral Air Force (Image Source: NASA)

The probe's journey, which brought it within 3.8 million miles of the solar surface on December 24, 2024, utilized the Wide-Field Imager for Solar Probe (WISPR) instrument to capture the intricate details of the Sun's outer atmosphere, or corona, and the solar wind. The new WISPR offers a detailed look at the heliospheric current sheet, where the Sun's magnetic field direction shifts. Furthermore, the probe captured high-resolution collisions of multiple coronal mass ejections (CMEs), large bursts of charged particles that significantly influence space weather. 



 

“In these images, we’re seeing the CMEs basically piling up on top of one another,” stated Angelos Vourlidas, WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory. Understanding how CMEs merge is vital, as these collisions can alter their trajectories and amplify their effects, posing greater risks to satellites and ground-based technology. The Parker Solar Probe's close proximity is crucial for preparing for such events. 

A coronal mass ejection on Feb. 27, 2000 taken by SOHO LASCO C2 and C3 (Image Source: SOHO ESA & NASA)
A coronal mass ejection on Feb. 27, 2000 taken by SOHO LASCO C2 and C3 (Image Source: SOHO ESA & NASA)

This mission is building on the legacy of Eugene Parker, who first theorized the solar wind in 1958. Earlier findings from the probe revealed that the solar wind exhibits erratic "zig-zagging" magnetic fields or switchbacks near the Sun. Scientists have now pinpointed the origins of these switchbacks and announced that they contribute to powering the fast solar wind, helping to resolve a 50-year-old mystery. The probe continues its work to understand the generation of the slower solar wind and how these particles escape the Sun's immense gravity, as mentioned on NASA's official site. 

The probe is also shedding light on the slow solar wind, which is denser and more variable than its faster counterpart. Its interaction with the fast solar wind can sometimes generate solar storm conditions comparable to those caused by CMEs. Prior to the Parker Solar Probe, distant observations suggested two types of slow solar wind existed, distinguished by their magnetic field variations: Alfvénic, which features small-scale switchbacks, and non-Alfvénic, which lacks these variations. The Parker Solar Probe has now confirmed the existence of both types and is helping scientists differentiate their origins. It's theorized that non-Alfvénic wind may emerge from helmet streamers (large loops connecting active regions where particles escape), while Alfvénic wind might have originated near coronal holes or dark, cooler regions in the corona. 

With its current orbit bringing it so close to the Sun, the Parker Solar Probe will continue to gather crucial data in upcoming passes, including its next on September 15, 2025, to further confirm the slow solar wind's origins. “We don’t have a final consensus yet, but we have a whole lot of new, intriguing data,” noted Adam Szabo, Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center. 

MORE STORIES

A recent study proposes that a computational technique known as numerical relativity could be the key to unraveling some of the universe's most profound mysteries.
15 hours ago
To determine if a massive collision could have created Jupiter's dilute core, researchers from Durham University used advanced supercomputer simulations of planetary impacts.
2 days ago
Rising carbon dioxide levels in Earth's atmosphere may dramatically alter the impact of future solar superstorms.
3 days ago
By merging X-ray and radio data, astronomers have produced a new image of the MSH 15-52 nebula that is providing fresh insights into its unique shape.
4 days ago
A study chronicles the dramatic changes of the Spirograph Nebula (IC 418), a cloud of gas and dust located about 4,000 light-years away.
4 days ago
New evidence about the Light Mantle, a distinctive bright streak on the Moon, has been uncovered in a recent study of a sample from the Apollo 17 mission.
5 days ago
Roughly two billion years after the Big Bang, the Cosmic Noon saw galaxies become intensely active, with star formation rates 10 to 100 times higher than today.
7 days ago
An international team of scientists mapped the distribution of both ordinary (H2O) and heavy (HDO) water within the comet's gaseous envelope.
7 days ago
This new, simple method could potentially offer a breakthrough in the search for extraterrestrial organisms.
Aug 16, 2025
South Africa's MeerKAT radio telescope array first detected the burst, named FRB 20240304B, in March, 2024.
Aug 15, 2025