Hubble Telescope reveals ultra-diffuse galaxy F8D1 shut down star formation nearly two billion years ago

Compared to typical galaxies of similar scale, ultra-diffuse galaxies (UDGs) stand out due to their reduced rates of current star formation.
PUBLISHED JUL 29, 2025
The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope (Cover Image Source: ESA/Hubble | R. van der Burg)
The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope (Cover Image Source: ESA/Hubble | R. van der Burg)

New observations from the Hubble Space Telescope are providing unprecedented detail into the star formation history of F8D1, a nearby ultra-diffuse galaxy (UDG). The findings, released July 17 on the arXiv preprint server, offer critical insights into these enigmatic, low-density stellar systems, as reported on Phys.org. The study revealed that F8D1 shut down star formation nearly two billion years ago among other findings.

Called an ultra-diffuse galaxy, this galactic oddball is almost as wide as the Milky Way, but it contains only 1/200th the number of stars as our galaxy (Image Source: NASA)
Called an ultra-diffuse galaxy, this galactic oddball is almost as wide as the Milky Way, but it contains only 1/200th the number of stars as our galaxy (Image Source: NASA)

UDGs are characterized by their remarkably low luminosities, sparse stellar populations, and minimal ongoing star formation when compared to typical galaxies of similar size, as mentioned on Harvard & Smithsonian. Often observed within galaxy clusters, UDGs exhibit a diverse array of forms, ranging from the smooth, round appearance of dwarf elliptical galaxies to distorted shapes indicative of past tidal disruptions. Their total masses can reach an astonishing one hundred billion solar masses. Beyond their intrinsic appeal, these diffuse structures hold significant value for astronomers. Their unique characteristics are crucial for models designed to unravel the mysteries of dark matter halos, invisible envelopes of dark matter that are thought to primarily bind these galaxies together and constitute the bulk of their mass. 

This composite image maps matter in the galaxy cluster 1E 0657-556, also known as the
This composite image maps matter in the galaxy cluster 1E 0657-556, also known as the "Bullet Cluster," which formed after the collision of two large clusters of galaxies (Image Source: NASA)

A team of astronomers, led by Adam Smercina of the Space Telescope Science Institute in Baltimore, utilized Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to scrutinize F8D1. Discovered in 1998 as a satellite of the M81 galaxy group, F8D1 is considered a prime example of a UDG, exhibiting properties distinct from other galaxy types, as per Phys.org

Thousands upon thousands of stars illuminate this breathtaking image of star cluster Liller 1, imaged with Hubble’s Wide Field Camera 3 (Image Source:  NASA | F. Ferraro)
Thousands upon thousands of stars illuminate this breathtaking image of star cluster Liller 1, imaged with Hubble’s Wide Field Camera 3 (Image Source: NASA | F. Ferraro)

"We have used new HST observations to infer the star formation history of the nearby UDG, F8D1, over the past six billion years," the researchers stated in their paper, emphasizing the ability to resolve individual stars in both the galaxy's central and outer regions. This detailed examination of F8D1's main body and stellar stream marks one of the most comprehensive UDG case studies to date. The Hubble observations precisely delineated three discrete periods of star formation within F8D1, painting a clearer picture of its stellar evolution. The earliest and most prolific phase occurred six billion years ago, a foundational event during which approximately 80% of the galaxy's stars came into existence. This initial burst established the vast majority of F8D1's stellar population. 

Following this, a second significant burst of star formation took place roughly 2 to 2.5 billion years ago, contributing a notable 11% of stars in the central regions and a more substantial 39% in the galaxy's outer fields. More recently, around 500 million years ago, a smaller yet crucial burst occurred, marking the formation of F8D1's nuclear star cluster and adding a final, albeit minor, percentage to the galaxy's overall stellar complement. 

Intriguingly, the data also indicate a global cessation of star formation in F8D1 less than two billion years ago, encompassing both its core and an extensive tidal stream stretching 42,400 light-years. This suggests the entire galaxy was actively forming stars just two billion years ago. The study estimates F8D1's progenitor mass at 133 million solar masses, with a significant 25-40% of its stellar mass currently dispersed within its vast tidal stream. The presence of substantial late-stage star formation, coupled with a typical globular cluster population, offers vital clues regarding F8D1's origins. These findings challenge the "failed galaxy" hypothesis, which posits that some UDGs are stellar remnants from early, violent star-forming episodes that depleted their gas reservoirs prematurely. 

MORE STORIES

Roughly two billion years after the Big Bang, the Cosmic Noon saw galaxies become intensely active, with star formation rates 10 to 100 times higher than today.
5 hours ago
An international team of scientists mapped the distribution of both ordinary (H2O) and heavy (HDO) water within the comet's gaseous envelope.
6 hours ago
This new, simple method could potentially offer a breakthrough in the search for extraterrestrial organisms.
3 days ago
South Africa's MeerKAT radio telescope array first detected the burst, named FRB 20240304B, in March, 2024.
4 days ago
Satellites reveal that Earth's equator and poles have different magnetosphere charge patterns.
4 days ago
Using data from the European Space Agency's (ESA) Gaia satellite, a team of astronomers identified the star GDR3_526285.
5 days ago
The researchers suggest that sulfur atoms are hiding in interstellar ice, where they form solid molecules like octasulfur crowns and polysulfanes.
6 days ago
The eleven fast-moving clouds of cold hydrogen gas, dubbed 'ice cubes,' should technically not exist, per astronomers.
7 days ago
A simulation challenges the long-held belief that the universe's first stars formed peacefully, revealing a violent and turbulent cosmic birthplace.
Aug 11, 2025
The celestial giant is 10,000 times more massive than the Milky Way's black hole and pushes the theoretical size limit.
Aug 10, 2025