New research suggests common baker's yeast could withstand harsh conditions on Mars

To assess Martian viability, scientists subjected yeast cells to Mach 5.6 shock waves and the corrosive perchlorate salts common on the Red Planet.
PUBLISHED NOV 6, 2025
Baking yeast cells. Scanning electron microscopy. Yeast is used in brewing and baking to ferment sugars into useful products (Representative Cover Image Source: Getty | David Spears FRPS ASIS FRMS)
Baking yeast cells. Scanning electron microscopy. Yeast is used in brewing and baking to ferment sugars into useful products (Representative Cover Image Source: Getty | David Spears FRPS ASIS FRMS)

New research from India suggests that common baker's yeast, Saccharomyces cerevisiae, possesses a remarkable capacity to withstand the brutal physical and chemical environment simulated to mimic conditions on Mars, according to the Indian Institute of Science

Assembly of cytoplasmic RNP condensates (yellow dots) in yeast cells in response to stress (Image Source: Indian Institute of Science | Riya Dhage)
Assembly of cytoplasmic RNP condensates (yellow dots) in yeast cells in response to stress (Image Source: Indian Institute of Science | Riya Dhage)

A collaborative team from the Indian Institute of Science (IISc) Biochemistry Department and the Physical Research Laboratory (PRL), Ahmedabad, successfully exposed yeast cells to conditions mirroring the harsh realities of the Red Planet, specifically, the intense shock waves caused by meteorite impacts and the toxic presence of perchlorate salts found in Martian regolith. The peer-reviewed study detailing these findings was published in PNAS Nexus on October 14, 2025.

The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a
The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter acquired this closeup image of a "fresh" impact crater in the Sirenum Fossae region of Mars on March 30, 2015 (Representative Image Source: NASA/JPL)

The researchers employed a specialized apparatus, the High-Intensity Shock Tube for Astrochemistry (HISTA), to subject the yeast to mechanical forces equivalent to Mach 5.6 shock waves. Simultaneously, or in isolation, cells were exposed to a 100 mM sodium perchlorate solution. "One of the biggest hurdles was setting up the HISTA tube to expose live yeast cells to shock waves – something that has not been attempted before – and then recovering yeast with minimum contamination for downstream experiments,” noted lead author Riya Dhage of IISc. 

Left: Riya Dhage (first author), Right: Purusharth I Rajyaguru (corresponding author) (Image Source: Indian Institute of Science | Swati Lamba)
Left: Riya Dhage (first author), Right: Purusharth I Rajyaguru (corresponding author) (Image Source: Indian Institute of Science | Swati Lamba)

In a significant finding, the yeast cells demonstrated survival, albeit with slowed growth, when subjected to the shock waves, the perchlorate, or the combination of both. The key to this unexpected durability appears to be the formation of ribonucleoprotein (RNP) condensates. Stress Granules and P-bodies (two types of RNPs) were assembled by shock waves. P-bodies formed alone when exposed only to perchlorate. Yeast strains unable to form these membrane-less structures showed drastically reduced survival rates. The study posits that these RNP condensates function as vital biomarkers for cellular stress under extraterrestrial duress, effectively protecting and reorganizing essential mRNA molecules.

The research is noted for its unique integration of shock wave physics, chemical biology, and molecular cell biology to understand life's coping mechanisms beyond Earth. According to the corresponding author, Professor Purusharth I. Rajyaguru, the team was "surprised to observe yeast surviving the Mars-like stress conditions." These findings underscore baker's yeast as an ideal model organism for astrobiology, potentially guiding the development of stress-resilient biological systems for future space exploration efforts, including those planned by India. 

NASA's Mars Perseverance rover acquired this image using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast (Image Source: NASA/JPL-Caltech)
NASA's Mars Perseverance rover acquired this image using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast (Representative Image Source: NASA/JPL-Caltech)

This resilience study arrives as NASA announces an even more tangible step in the search for life on Mars. The Perseverance rover has identified a potential biosignature, a substance suggestive of past life, within a rock core extracted from an ancient riverbed in Jezero Crater. The discovery, detailed in a paper published in the journal Nature on September 10, stems from a sample dubbed "Sapphire Canyon," drilled from the rock formation named "Cheyava Falls" last year. According to NASA officials, this finding represents the closest humanity has yet come to tangible evidence of life on the Red Planet.  



Acting NASA Administrator Sean Duffy called the identification of a potential biosignature a "groundbreaking discovery" that "will advance our understanding of Mars.” Taken together, the survival capability demonstrated by terrestrial lifeforms like yeast under simulated impact and chemical stress, combined with the in-situ detection of a potential biosignature, significantly deepens the scientific momentum behind the quest for extraterrestrial biology. 

More on Starlust

Life on Mars? Astrophysicist Neil deGrasse Tyson and astrobiologist David Grinspoon break down NASA's latest discovery

Scientists reveal signs of active life on Mars could now be detected using an old tool

MORE STORIES

Northern hemisphere dust storm appears to have provided an avenue for water escape on Mars in Martian Year 37.
8 hours ago
The X4.2-rated flare erupted at 7:13 a.m. EST on February 4.
14 hours ago
One of the supernovas' light will arrive in another 60 years, while the other's will arrive in 1 to 2 years.
16 hours ago
The lab-made cosmic dust shows the same infrared signals as the dust found in outer space.
1 day ago
The scientists fed 30 years’ worth of data from satellites into a 3D Babcock–Leighton dynamo model.
2 days ago
The sunspot region released as many as four X-class flares in a span of 24 hours.
2 days ago
For the study, the researchers analyzed 214 of the most massive stars in the Milky Way.
6 days ago
NASA’s TESS tracked the interstellar comet during a special observation period from January 15 to 22, 2026.
7 days ago
While Mercury was quite active in its early days, it has been perceived as dead for a long time because of the static appearance of its surface.
7 days ago
A new paper is looking into the possibility of the collision being a reality and the kind of scientific opportunities it might present.
Jan 28, 2026