Black holes could be a source of the universe’s mysterious dark energy, new study suggests

According to a new model, the death of stars and their collapse into black holes might be a key mechanism for generating dark energy.
PUBLISHED AUG 24, 2025
An artist concept illustrates a supermassive black hole with millions to billions of times the mass of our Sun (Cover Image Source: NASA/JPL-Caltech).
An artist concept illustrates a supermassive black hole with millions to billions of times the mass of our Sun (Cover Image Source: NASA/JPL-Caltech).

An international team of physicists, leveraging data from the Dark Energy Spectroscopic Instrument (DESI), has proposed a groundbreaking theory: black holes could be a source of the universe’s mysterious dark energy. This novel model suggests that as stars collapse, the matter they contain is slowly converted into dark energy, offering a new perspective on the expansion of the universe, as per Durham University.

Dark Energy Spectroscopic Instrument (DESI) (Image Source: DESI)
Dark Energy Spectroscopic Instrument (DESI) (Image Source: DESI)

The research, led by a team from the University of Michigan with key contributions from Durham University and other institutions, was recently published in Physical Review Letters. For years, scientists believed that dark energy's influence remained constant throughout the universe's history. However, recent DESI findings have challenged this notion, suggesting that dark energy's role may, in fact, be evolving.

This new black hole model provides a solution to a separate, long-standing puzzle: the mass of neutrinos. When researchers attempted to interpret DESI data using the conventional model of constant dark energy, the calculations resulted in an unphysical scenario of negative neutrino mass, a clear contradiction. The new study presents a dynamic model that resolves this discrepancy, aligning with known physics and restoring the positive mass of these elusive particles.

A disk of hot gas swirls around a black hole in this illustration (Representative Image Source: NASA Image and Video Library | NASA)
A disk of hot gas swirls around a black hole in this illustration (Image Source: NASA Image and Video Library | NASA)

Meanwhile, a complementary study, new research on an expansive dataset of Type Ia supernovae, has also found evidence that dark energy may be changing. This would be a significant break from Albert Einstein's cosmological constant, which proposed that dark energy is a fixed force.



 

The Supernova Cosmology Project (SCP), based at the Lawrence Berkeley National Laboratory, published its groundbreaking analysis in The Astrophysical Journal. The project’s journey began in 1998, when the observation of Type Ia supernovae, the explosive deaths of white dwarf stars, first revealed that the universe's expansion was accelerating. This surprising discovery led to the concept of dark energy and earned the SCP a Nobel Prize.

Animation of Type Ia supernova from merging white dwarfs (Representative Image Source: NASA's Goddard Space Flight Center Conceptual Image Lab)
Animation of Type Ia supernova from merging white dwarfs (Representative Image Source: NASA's Goddard Space Flight Center Conceptual Image Lab)

To reach their current conclusion, scientists had to solve a major problem: while over 2,000 supernovae have been documented since then, inconsistencies in data collection made direct comparisons difficult. The SCP team meticulously unified these observations into a single, comprehensive dataset called Union3, allowing for this groundbreaking new analysis.

This is the remnant of Kepler’s supernova, the famous explosion that was discovered by Johannes Kepler in 1604 (Image Source: NASA/JPL-Caltech)
This is the remnant of Kepler’s supernova, the famous explosion that was discovered by Johannes Kepler in 1604 (Image Source: NASA/JPL-Caltech)

The Union3 analysis provides compelling, though not yet conclusive, evidence that dark energy's strength might be diminishing over cosmic time. This intriguing hint is further bolstered by independent analyses from the Dark Energy Spectroscopic Instrument (DESI) and a partially independent supernova analysis, which includes data from the DOE-led Dark Energy Survey. The convergence of these separate lines of inquiry has piqued the interest of the scientific community.

The DESI collaboration, a massive undertaking managed by the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), involves over 900 scientists from more than 70 institutions worldwide. Its primary goal is to create a detailed 3D map of the universe, and the insights from this study, which significantly reframe our understanding of cosmic evolution, are a testament to the power of international scientific collaboration, as mentioned by Durham University.

Kitt Peak National Observatory at dusk. DESI, the Dark Energy Spectroscopic Instrument, is housed within the Mayall Telescope dome (right) (Image Source: Berkeley Lab | Marilyn Sargent)
Kitt Peak National Observatory at dusk. DESI, the Dark Energy Spectroscopic Instrument, is housed within the Mayall Telescope dome (right) (Image Source: Berkeley Lab | Marilyn Sargent)

The Dark Energy Spectroscopic Instrument (DESI), a key component of this research, was designed and built with significant contributions from Durham University and is housed on the Nicholas U Mayall 4-meter Telescope at Kitt Peak National Observatory in Arizona. The DESI collaboration acknowledges the honor of conducting scientific research on Iolkam Du’ag (Kitt Peak), a site of great cultural significance to the Tohono O’odham Nation.

MORE STORIES

The findings confirm the presence of rare binary systems and suggest certain black holes are second-generation, forged in earlier cosmic collisions.
5 hours ago
New research suggests a massive black hole is the primary force preventing Segue 1's small complement of stars from drifting into the void.
1 day ago
The rocky exoplanet GJ 251 c, estimated to be nearly four times the mass of Earth, has been classified as a 'super-Earth.'
5 days ago
Zeroing in on the Circinus Galaxy, located just 13 million light-years away, the research team meticulously analyzed archival data captured by ALMA.
Oct 14, 2025
An international research collective has serendipitously discovered an ultra-luminous infrared galaxy (ULIRG), a system intensely forming stars, hidden behind the distant and well-known Cloverleaf quasar, H1413+117.
Oct 13, 2025
Researchers focused on the quasar OJ287, an intensely bright galactic core whose erratic light patterns had long suggested the presence of a pair of orbiting black holes.
Oct 10, 2025
The asteroid's orbit is highly elliptical (stretched-out), causing it to take approximately 2.65 years (967 days) to complete one trip around the Sun.
Oct 9, 2025
On February 13, 2023, the KM3NeT underwater telescope registered the high-energy 'ghost particle.'
Oct 8, 2025
These curious rings, gigantic and faint radio emissions surrounding galaxies, are a newly recognized astronomical phenomenon first detected only six years ago.
Oct 3, 2025
Astronomers achieved the stunning observation using the European Southern Observatory’s VLT in Chile, with the James Webb Space Telescope providing crucial supplementary data.
Oct 3, 2025