Accidental double zooming pinpoints unexpected millimeter waves near supermassive black hole's core

A rare gravitational lensing event, dubbed an 'accidental double zoom' by astronomers, allowed for a breakthrough observation of the distant quasar RXJ1131-1231.
PUBLISHED AUG 22, 2025
An illustration of what a black hole with an accretion disk may look like based on modern understanding. (Representative Cover Image Source: Getty | solarseven; edited by Starlust staff)
An illustration of what a black hole with an accretion disk may look like based on modern understanding. (Representative Cover Image Source: Getty | solarseven; edited by Starlust staff)

An international team of astronomers has utilized a rare cosmic alignment to prove that millimeter radiation is generated close to the core of a supermassive black hole. The findings, led by Matus Rybak of Leiden University, have been accepted for publication in the journal Astronomy & Astrophysics, as reported on Phys.org

Artist’s rendering of the corona around a black hole (Image Source: RIKEN)
Artist’s rendering of the corona around a black hole (Image Source: RIKEN)

The discovery, which the team calls an "accidental double zoom," came as a breakthrough in observing a quasar known as RXJ1131-1231. This galaxy is uniquely positioned behind a foreground galaxy that acts as a gravitational lens, magnifying the background quasar by a factor of three. This effect is known as macrolensing.

While studying the quasar with the ALMA telescope in 2015, the team observed that the multiple magnified images of the galaxy flickered independently. Rybak immediately recognized this as a sign of microlensing, a separate phenomenon where a single star within the foreground galaxy passes in front of the quasar, creating a second layer of magnification. Rybak describes the combined effect of macro- and microlensing as "placing two magnifying glasses on top of each other." The team re-observed the quasar in 2020, tracking its brightness fluctuations over time.

Like a celestial blanket the Milky Way forms an arc high above the antennas of the Atacama Large Millimeter/submillimeter Array (Image Source: ALMA Observatory)
Like a celestial blanket the Milky Way forms an arc high above the antennas of the Atacama Large Millimeter/submillimeter Array (Image Source: ALMA Observatory)

The most notable observation was the quasar's flickering in millimeter-wave radiation, which is typically associated with calm, cold gas and dust. This unexpected activity suggests the radiation is not from dust but rather from the black hole's corona, a hot, active, and highly magnetic region. While millimeter radiation has been seen near black holes before, its origin had remained a mystery. This groundbreaking research, which pioneered the use of microlensing for millimeter radiation, opens the door to studying the temperature and magnetic fields immediately surrounding black holes. The team has been granted observation time with the Chandra X-ray Telescope to continue their investigation. Understanding the conditions near the black hole is crucial, as they are known to impact the entire galaxy.

Expanding on these remarkable findings, new data from NASA's Chandra X-ray Observatory and the Hubble Space Telescope have allowed astronomers to directly measure the spin of the supermassive black hole at the heart of the distant quasar, RX J1131-1231, as per NASA. Located approximately 6 billion light-years from Earth, it is now the most distant black hole for which a spin measurement has ever been made.

Quasar known as RX J1131-1231, located roughly six billion light-years from Earth in the constellation Crater (Image Source: ESA/Webb)
Quasar known as RX J1131-1231, located roughly six billion light-years from Earth in the constellation Crater (Image Source: ESA/Webb)

Astronomers were able to obtain a high-quality X-ray spectrum, a measurement of the amount of X-rays at different energies, of the quasar by leveraging the same phenomenon of gravitational lensing. This process, first predicted by Einstein, allowed the light from the quasar to be bent and magnified by an intervening elliptical galaxy, which created four distinct images of the object. This natural "telescope" provided an unprecedented look at regions very close to the black hole. The Chandra data, shown in pink, highlights these four distinct images, while the Hubble data in red, green, and blue reveal the lensing galaxy and others in the field. 

Quasars are incredibly bright cores of distant galaxies powered by supermassive black holes, according to NASA. Their immense luminosity, generated from a region just a few light-days to a few light-years across, can be 10 to 100,000 times that of our own Milky Way galaxy.

MORE STORIES

The four planets orbit a very young star, V1298 Tau, and have already lost much of their atmospheres.
2 days ago
Astronomers detect the earliest known galaxy cluster gas from just 1.4 billion years after the Big Bang.
2 days ago
The James Webb Space Telescope has identified massive, short-lived stars that are essentially 'seeds' for the universe's first supermassive black holes.
3 days ago
These newly-discovered objects look like stars but behave like galaxies.
3 days ago
Astronomers used the XRISM mission to separate signals and analyze the extreme gravitational forces at work in active galactic nucleus MCG–6-30-15.
3 days ago
Astronomer had been trying to solve the mystery behind Betelgeuse's behavior for decades.
4 days ago
The Champagne Cluster was discovered back on December 30, 2020.
5 days ago
From a sauna world to one where it rains glass, exoplanets are stranger than science fiction.
Dec 30, 2025
Triple systems like this are rare, but are essential to observe hierarchical galaxy evolution.
Dec 25, 2025
The largest protoplanetary disk ever has been found by the Hubble Space Telescope and is quite active as materials stretch in the system.
Dec 24, 2025