For the first time, astronomers chronicled 130 years of a dying star's transformation

A study chronicles the dramatic changes of the Spirograph Nebula (IC 418), a cloud of gas and dust located about 4,000 light-years away.
PUBLISHED AUG 22, 2025
The images shows light from the nebula emitted by nitrogen atoms, and clearly depicts the spirograph-like appearance of the nebula (Cover Image Source:  Hubble Space Telescope | R. Sahai)
The images shows light from the nebula emitted by nitrogen atoms, and clearly depicts the spirograph-like appearance of the nebula (Cover Image Source: Hubble Space Telescope | R. Sahai)

In a stunning display of stellar evolution, astronomers have for the first time chronicled 130 years of a dying star's transformation, revealing it is heating up at a pace unprecedented for a typical star. The groundbreaking study, published in The Astrophysical Journal Letters, details the dramatic changes of the Spirograph Planetary Nebula (IC 418), a cloud of gas and dust located roughly 4,000 light-years away, as per the University of Manchester

 Dubbed the Spirograph Nebula for its resemblance to drawings from a cyclical drawing tool, planetary nebula IC 418 shows patterns that are not well understood (Image Source: NASA, ESA, and the Hubble Heritage Team)
Dubbed the Spirograph Nebula for its resemblance to drawings from a cyclical drawing tool, planetary nebula IC 418 shows patterns not well understood (Image Source: NASA, ESA, and the Hubble Heritage Team | Dr. R. Sahai et al.)

By meticulously piecing together astronomical records dating back to 1893, researchers discovered that the nebula's vibrant green light, a signature of glowing oxygen atoms, has intensified by about 2.5 times. This change is directly linked to the core star's escalating temperature, which has surged by approximately 3,000°C over the same period—a rate of about 1,000°C every 40 years. For perspective, our Sun's core would require 10 million years to achieve the same temperature increase.

While the observed heating is the fastest on record, it still falls short of current theoretical models. This discrepancy challenges long-held theories on stellar aging and death, potentially requiring a reassessment of which stars are capable of producing carbon, a building block of life. Professor Albert Zijlstra of The University of Manchester, the study's lead researcher, highlighted the value of historical data, stating, "We often ignore scientific data obtained long in the past. In this case, these data revealed the fastest evolution of a typical star that has been seen directly. The past shows that the skies are not as unchanging as we may think."

This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. (Photo by Stocktrek Images / Getty Images)
This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. (Representative Image Source: Getty | Stocktrek Images)

The study offers a rare, direct look at how planetary nebulae evolve. These cosmic structures represent a star's final moments as its core becomes unstable, shedding its outer layers into space to form stunning shapes like the intricate Spirograph Nebula. Our own Sun is expected to undergo a similar process in roughly 5 billion years. This research, which involved a painstaking calibration of observations ranging from late 19th-century eye-drawn sketches to modern high-tech captures, provides tangible evidence that cosmic changes can happen on a human timescale.

Professor Quentin Parker from the University of Hong Kong, a co-author of the study, emphasized its importance, noting, "It will prompt us to rethink some of our existing models of stellar life cycles." He added that the team's effort in collecting and verifying more than a century's worth of data was a "challenging process that goes far beyond simple observation." The findings suggest that the night sky is far more dynamic than previously assumed, offering a new perspective on the rapid transformations that can occur during a star's final, fiery chapter.

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes and radio waves seen by the VLA to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory (Cover Image Source: NASA Image and Video Library | NASA)
Astronomers have produced a highly detailed image of the Crab Nebula by combining data from telescopes and radio waves seen by the VLA to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory (Image Source: NASA Image and Video Library | NASA)

The striking, swirling appearance of IC 418, dubbed the Spirograph Nebula for its resemblance to intricate drawings, is a puzzle for astronomers. While a star's death throes are well-understood, the chaotic patterns of the nebula are not, as per NASA. Scientists theorize these formations may be caused by unpredictable winds from the central star, which shifts in brightness for just a few hours.

Only a few million years ago, IC 418 was likely a star much like our Sun. Then, just a few thousand years ago, it evolved into a common red giant. As its nuclear fuel dwindled, the star began shedding its outer layers, which now form the glowing nebula. The remaining hot core, visible at the center of the nebula, is on its way to becoming a white dwarf star. The light from this core excites the surrounding atoms, causing the nebula to shine brightly.

MORE STORIES

To assess Martian viability, scientists subjected yeast cells to Mach 5.6 shock waves and the corrosive perchlorate salts common on the Red Planet.
3 days ago
These impacts pack surprising power; a mere 11-pound meteoroid can blast a 30-foot (9-meter) crater, ejecting 75 metric tons of lunar soil.
4 days ago
Sunspot AR3474 detonated with an X1.8 solar flare on November 4, sending an ultraviolet wave silencing South America's shortwave radio communications.
4 days ago
Observations were maintained using imagery from solar imagers on the STEREO-A, SOHO, and GOES-19 missions near the Sun.
6 days ago
PUNCH satellites secured the initial images of the comet, which had just emerged from behind the Sun.
6 days ago
Four weeks after its acquisition on October 2–3, 2025, the vital MRO HiRISE data remains inaccessible to researchers.
6 days ago
JPL navigation engineer Dr. Davide Farnocchia compiled the data that captured the phenomenon as the comet reached perihelion.
Oct 31, 2025
NASA, on the other hand, continues to assert that 3I/ATLAS is a comet of natural origin.
Oct 30, 2025
The T Coronae Borealis (T CrB) star system is a recurrent nova known for its predictable, massive explosions.
Oct 30, 2025
Wormholes, conceptual tunnels slicing through spacetime, offer a theoretical shortcut between two distant cosmic points.
Oct 30, 2025