Evidence of ‘standing shocks’ in black hole accretion flows rewrites our understanding of cosmic signals

'This advances our understanding of accretion physics, a field central to unraveling black hole behavior and galaxy evolution,' explained a scientist.
PUBLISHED AUG 31, 2025
Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (RepresentativeCover Image Soource: Getty Images | Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY)
Artwork of a black hole surrounded by an accretion disc of material, the light from which is warped by the strong gravity. (RepresentativeCover Image Soource: Getty Images | Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY)

A team of researchers led by Yunnan Observatories of the Chinese Academy of Sciences took a peek into an aspect of black holes. The low-angular-momentum accretion flow around black holes could reveal much about other aspects if studied. A study in The Astrophysical Journal hints at how it explains extreme plasma behavior in strong gravity. This is where shock formation is naturally able to create signature variations that help distinguish processes. Accretion flow simulations to investigate its dynamics closer to the center of a black hole revealed something new.

3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Photo by Cavan Images / Luca Pierro / Getty Images)
3d render image of a Black Hole in space surrounded by its orbiting remnants. (Representative Image Source: Getty Images | Photo by Cavan Images / Luca Pierro)

The study confirmed the presence of a standing shock in low-angular-momentum black hole accretion modes. It used general relativistic magnetohydrodynamic (GRMHD) simulations to arrive at this conclusion. The study collaborated with international researchers and was led by Prof. MAO Jirong from the Yunnan Observatories. According to the Chinese Academy of Sciences, accretion takes place around compact objects because of strong gravitational fields. The accretion dynamics were central to the understanding of how galaxies formed and evolved.

Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Cover Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY / Getty Images)
Illustration of a black hole as seen from a planet, surrounded by an accretion disc of material. (Representative Image Source: Getty Images | Photo by MARK GARLICK / SCIENCE PHOTO LIBRARY)

The formation of shocks in accretion flows near central black holes was previously hypothesized, but was not conclusively proved. However, regardless of being elusive, "standing shocks" were defined by their fixed positions. To put the matter to rest, the team conducted MHD simulations in two and three dimensions. This was done within the framework of general relativity with a focus on black hole accretion dynamics. Direct evidence for standing shocks was found with the formation of a consistent shock near the central black hole, which held a stable position.

In this handout photo provided by NASA, this is the first image of the supermassive black hole at the centre of our galaxy, with an added black background to fit wider screens (Image Source: Getty | Photo Credit: NASA)
This is the first image of the supermassive black hole at the centre of our galaxy, in a handout by NASA. (Representative Image Source: Getty Images | Photo by NASA)

The stability was maintained throughout the accretion process in low-angular-momentum accretion modes. The study also concluded that standing shocks take place in "standard and normal evolution" (SANE) accretion disks. However, they are absent in "magnetic arrested disk" (MAD) systems, a difference to be updated in black hole accretion models. The existence of standing shocks has implications for the behavior of black hole matter and signal detection. It influenced the dynamics of accretion, which is at the center of high-energy astrophysical research.

An illustration of what a black hole with an accretion disk may look like based on modern understanding. (Representative Cover Image Source: Getty | solarseven)
An illustration of what a black hole with an accretion disk may look like based on modern understanding. (Representative Image Source: Getty Images | Photo by solarseven)

This comes into play with the connection created between standing shocks to quasi-periodic oscillations (QPOs). The latter is a well-documented pattern of emission fluctuations detected in certain X-ray binaries and active galactic nuclei. This was affected by the standing shocks that oscillate between two fixed points. This oscillation accelerates charged particles, and the radiation emitted by these particles is linked to the origin of QPO. This radiation matches the periodic signals that are observed in said X-ray binaries and active galactic nuclei.

A bevy of black holes and neutron stars shine as bright, point-like sources against bubbles of million degree gas in this false-color x-ray image from the orbiting Chandra Observatory, released August 17, 2000.  (Representative Photo by NASA / Newsmakers / Getty Images)
A bevy of black holes and neutron stars shines in this false-color X-ray image from the orbiting Chandra Observatory, released August 17, 2000. (Representative Image Source: Getty Images | Photo by NASA / Newsmakers)

"This study advances our understanding of accretion physics, a field central to unraveling black hole behavior and galaxy evolution," explained Prof. MAO. The study of accretion near a black hole's event horizon has been a priority since the first images of black holes. The Event Horizon Telescope (EHT) captured the first image of a black hole's shadow in 2019. The research and its work were aided by the National Key R&D Program of China, the Natural Science Foundation of China, and the Yunnan Revitalization Talent Support Program. The study addresses a gap in black hole knowledge and brings about a scientific consensus on standing shocks.

MORE STORIES

Hidden asteroids sharing Venus's orbit are currently undetectable by our best telescopes because of their unique, sun-obscured positions and paths.
1 day ago
After being ruled out as a threat to Earth, the asteroid 2024 YR4 is now on a trajectory that shows a rising probability of colliding with the Moon.
2 days ago
Astronomers observed drifting 'dark beads' in the ionosphere and an asymmetric star pattern in the stratosphere of Saturn.
4 days ago
Scientists identified the chemical composition of the doomed object by analyzing the material as it fell onto the white dwarf.
6 days ago
In a first, scientists have documented a dramatic shift in the magnetic fields near the M87 black hole, forcing them to rethink how matter behaves in these environments.
Sep 17, 2025
By studying younger stars, this discovery provides a cosmic crystal ball to predict dangerous space weather events, helping to protect our technology.
Sep 15, 2025
When they were first spotted in 2022, these tiny red dots were nicknamed 'universe breakers.'
Sep 15, 2025
While astronomers were observing Quaoar on June 25, 2025, a solid object unexpectedly blocked out the starlight for 1.23 seconds.
Sep 14, 2025
A groundbreaking study has not only solved the longstanding mystery of how ancient stellar systems form but has also revealed an entirely new class of object in the Milky Way.
Sep 14, 2025
The greedy white dwarf star in question is the V Sagittae, which is a highly luminous binary star and is found eating its larger twin.
Sep 12, 2025