Cosmic signal from just 3 billion years after the Big Bang is most distant fast radio burst ever found

South Africa's MeerKAT radio telescope array first detected the burst, named FRB 20240304B, in March, 2024.
PUBLISHED AUG 15, 2025
Conceptual image of the Big Bang, a computer illustration representing the origin of the universe (Representative Cover Image Source: Getty | ALFRED PASIEKA/SCIENCE PHOTO LIBRARY)
Conceptual image of the Big Bang, a computer illustration representing the origin of the universe (Representative Cover Image Source: Getty | ALFRED PASIEKA/SCIENCE PHOTO LIBRARY)

A team of astronomers has announced the detection of the most distant fast radio burst (FRB) ever recorded, a fleeting cosmic signal that originated just three billion years after the Big Bang. The discovery, published in a new paper on the arXiv preprint server, pushes the boundaries of our understanding of the early universe and could reshape theories about the origins of these mysterious, millisecond-long radio flashes, according to Universe Today.

Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)
Artist's interpretation of the Big Bang, with representations of the early universe and its expansion (Image Source: NASA)

The burst, officially designated FRB 20240304B, was initially captured on March 4, 2024, by the MeerKAT radio telescope array in South Africa. Its extreme distance was immediately apparent from the signal's dispersion, a measurement of how much the radio waves were stretched and delayed by intervening matter. This measurement indicated the signal had traveled for over 11 billion years to reach Earth

The South African MeerKAT radio telescope, situated 90 km outside the small Northern Cape town of Carnarvon, is a precursor to the Square Kilometre Array (SKA) telescope and will be integrated into the mid-frequency component of SKA Phase 1 (Image Source: South African Radio Astronomy Observatory)
The South African MeerKAT radio telescope, situated 90 km outside the small Northern Cape town of Carnarvon, is a precursor to the Square Kilometre Array (SKA) telescope and will be integrated into the mid-frequency component of SKA Phase 1 (Image Source: South African Radio Astronomy Observatory)

Pinpointing the exact source of such a distant signal was a challenge. While initial searches using ground-based telescopes and archival data were unsuccessful, follow-up observations with the James Webb Space Telescope (JWST) proved crucial. Using the telescope's NIRCam and NIRSpec instruments, astronomers were able to identify the host galaxy and determine its precise redshift. The host galaxy, a low-mass, clumpy, and actively star-forming galaxy, existed at a redshift of 2.148, placing it in the epoch known as "cosmic noon," a period of intense star formation in the universe's history. 

This discovery by a group of astronomers, led by Manisha Caleb of the University of Sydney, is a major leap forward, doubling the distance of previously located FRBs. Earlier detections had only reached back about halfway through cosmic history. Now, with FRB 20240304B, astronomers are probing ionized baryons, the normal matter that makes up stars and galaxies, across approximately 80% of the universe's timeline. The characteristics of the host galaxy itself provide important clues about the nature of fast radio bursts. Since the galaxy is young, low-mass, and still rapidly forming stars, the presence of an FRB suggests these events can arise relatively quickly. This supports the leading theory that FRBs are caused by highly magnetized, rapidly rotating neutron stars known as magnetars, which are a potential end stage for massive stars. The finding challenged theories that require longer periods of cosmic evolution to produce these bursts. 

In an ejection that would have caused its rotation to slow, a magnetar is depicted losing material into space in this artist’s concept (Image Source: NASA/JPL-Caltech)
In an ejection that would have caused its rotation to slow, a magnetar is depicted losing material into space in this artist’s concept (Image Source: NASA/JPL-Caltech)

Furthermore, the signal’s journey to Earth revealed complex magnetic field structures spanning vast distances. By analyzing how the signal was distorted as it passed through cosmic structures like the Virgo Cluster, researchers are gaining new insights into the magnetic fields that permeate the universe. The detection of FRB 20240304B during a time of peak star formation in the universe's history is particularly significant. It demonstrates that FRBs can be used as powerful tools to study galaxy formation and the properties of the cosmos during its most active and dynamic era. As new generations of telescopes come online, fast radio bursts like this one are poised to become invaluable messengers from the distant past, helping scientists piece together the evolutionary history of the universe. 

Simultaneously, a separate group of astronomers from the Netherlands Institute for Radio Astronomy (ASTRON) has announced the detection of a rare, radio-pulsing white dwarf. This enigmatic cosmic object, one of only ten ever found, challenges current theories about how stellar remnants can produce such powerful radio emissions. The discovery, detailed in the Journal Astronomy & Astrophysics and led by astronomer Sanne Bloot, was made using the LOFAR radio telescope. The new source, named ILT J163430+445010, is classified as a long-period transient (LPT), a type of celestial body​ that emits radio pulses at an unusually slow rate.

MORE STORIES

These impacts pack surprising power; a mere 11-pound meteoroid can blast a 30-foot (9-meter) crater, ejecting 75 metric tons of lunar soil.
16 hours ago
Sunspot AR3474 detonated with an X1.8 solar flare on November 4, sending an ultraviolet wave silencing South America's shortwave radio communications.
20 hours ago
Observations were maintained using imagery from solar imagers on the STEREO-A, SOHO, and GOES-19 missions near the Sun.
2 days ago
PUNCH satellites secured the initial images of the comet, which had just emerged from behind the Sun.
2 days ago
Four weeks after its acquisition on October 2–3, 2025, the vital MRO HiRISE data remains inaccessible to researchers.
2 days ago
JPL navigation engineer Dr. Davide Farnocchia compiled the data that captured the phenomenon as the comet reached perihelion.
5 days ago
NASA, on the other hand, continues to assert that 3I/ATLAS is a comet of natural origin.
6 days ago
The T Coronae Borealis (T CrB) star system is a recurrent nova known for its predictable, massive explosions.
6 days ago
Wormholes, conceptual tunnels slicing through spacetime, offer a theoretical shortcut between two distant cosmic points.
6 days ago
The highly anticipated interstellar comet is currently invisible from Earth and completely hidden by the Sun's glare.
6 days ago