Hubble captures active black hole devouring spiral galaxy 250 million light-years away

The spiral galaxy UGC 11397, in the constellation Lyra, is home to a supermassive black hole aggressively consuming material at its core.
PUBLISHED JUN 30, 2025
A Hubble image shows the spiral galaxy UGC 11397 (Cover Image Source: Hubble & NASA | M. J. Koss)
A Hubble image shows the spiral galaxy UGC 11397 (Cover Image Source: Hubble & NASA | M. J. Koss)

The Hubble Space Telescope has captured a stunning cosmic event 250 million light-years away, revealing a supermassive black hole aggressively consuming material within the spiral galaxy UGC 11397. This galaxy, located in the constellation Lyra, initially appears to be a typical spiral with graceful arms of stars and dust, according to NASA



 

However, its core harbors a colossal secret: a black hole with a mass 174 million times that of our Sun, actively growing by ensnaring gas, dust, and even entire stars. This doomed matter heats up dramatically, producing a brilliant cosmic light show across the electromagnetic spectrum, from gamma rays to radio waves, with its brightness fluctuating unpredictably. 

NASA Solar Terrestrial Relations Observatory STEREO satellites have provided the first three-dimensional images of the Sun (Image Source: NASA Image and Video Library | NASA)
NASA Solar Terrestrial Relations Observatory STEREO satellites have provided the first three-dimensional images of the Sun (Image Source: NASA Image and Video Library | NASA)

Despite thick dust clouds obscuring much of this activity in visible light, the black hole's vigorous feeding was confirmed through its powerful X-ray emissions. These high-energy rays can penetrate the surrounding dust, leading astronomers to classify UGC 11397 as a Type 2 Seyfert galaxy. This designation refers to active galaxies whose central regions, despite their intense activity, are hidden from optimal view by a donut-shaped cloud of dust and gas. Researchers are now leveraging Hubble to study hundreds of similar galaxies like UGC 11397, which host accreting supermassive black holes. These observations are crucial for precisely measuring the mass of nearby supermassive black holes, understanding their growth in the early universe, and even investigating how stars form in the extreme environments found at the very heart of a galaxy. 

The Hubble Space Telescope captured this image of spiral galaxy NCG 5728, which is also a Seyfert-type active galaxy (Image Source: NASA)
The Hubble Space Telescope captured this image of spiral galaxy NCG 5728, which is also a Seyfert-type active galaxy (Image Source: NASA)

Astronomers broadly categorize black holes into three main types based on their mass: stellar-mass, supermassive, and intermediate, though the exact boundaries are subject to ongoing scientific refinement. There's also theoretical speculation about a fourth type, primordial black holes, which may have formed during the universe's infancy and remain undiscovered. Stellar-mass black holes form when massive stars, over eight times the Sun's mass, collapse after a supernova, typically resulting in a few to hundreds of solar masses. They grow by absorbing surrounding matter and colliding with other objects. Many are found in X-ray binaries, where they pull gas from a companion star, creating X-ray emissions. Though only about 50 are confirmed in the Milky Way, estimates suggest there could be 100 million, as mentioned on NASA

This simulated image shows how black holes bend a starry background and capture light, producing black hole silhouettes (Image Source: NASA’s Goddard Space Flight Center)
This simulated image shows how black holes bend a starry background and capture light, producing black hole silhouettes (Image Source: NASA’s Goddard Space Flight Center)

Conversely, supermassive blackholes reside at the heart of most galaxies, including our own Sagittarius A*, a pronounced eye star, which is 4 million times the mass of the Sun. These behemoths range from hundreds of thousands to billions of times the Sun's mass. Their origins are still a mystery, though some may have formed from the collapse of early supermassive stars. They grow by consuming smaller objects and merging during galactic collisions. The existence of intermediate-mass black holes, bridging the gap between stellar and supermassive types (hundreds to hundreds of thousands of solar masses), remains a puzzle. These "missing links" are theorized to form from stellar-mass black hole collisions, but are hard to confirm. Lastly, primordial black holes are hypothetical, believed to have formed during the first second after the birth of the universe. While unproven, more massive primordial black holes might still exist, while smaller ones may have evaporated over cosmic time. 

A swirling vortex of hot gas glows in this multiwavelength composite, marking the approximate location of the supermassive black hole Sagittarius A* (pronounced ey-star) at the heart of our Milky Way galaxy (Image Source: NASA)
A swirling vortex of hot gas glows in this multiwavelength composite, marking the approximate location of the supermassive black hole Sagittarius A* (pronounced ey-star) at the heart of our Milky Way galaxy (Image Source: NASA)

Further extending its reach, the NASA/ESA Hubble Space Telescope continues to offer unavailable insights into the dynamic processes shaping galaxies, Recent observations highlight both vigorous star formation and more subdued environments in our cosmic neighborhood, exemplified by the dwarf galaxy NGC 4449 in the constellation Canes Venatici, which stands out as a "starburst galaxy" 



 

MORE STORIES

NASA scientists have finally pinpointed the source of mysterious radiation from a supermassive black hole, solving a puzzle that has lasted for years.
5 days ago
Webb uncovers evidence of giant primordial stars that may explain how early black holes formed less than a billion years after the Big Bang.
6 days ago
Smaller black holes tend to attract less material, making them naturally dimmer. Chandra would miss many of these faint objects.
7 days ago
The data suggest this small, super-hot world is shrouded in a thick layer of gas, likely hovering above a planet-wide ocean of magma.
Dec 13, 2025
The region around black holes was not thought to be conducive to star formation, yet research proved otherwise.
Dec 12, 2025
The discovery, validated by a separate European team led by the University of Exeter, may offer fresh insight into interactions between planets and binary star systems.
Dec 12, 2025
During its 1986 observation of the planet in the first and only flyby, the spacecraft measured a surprisingly strong electron radiation belt.
Dec 11, 2025
Previously, the most ancient supernova ever confirmed dated back to when the universe was 1.8 billion years old.
Dec 10, 2025
NASA's Fermi telescope was the first to identify the highly unusual cosmic explosion.
Dec 10, 2025